核心算法

Binary Tree based Recursion & Divide Conquer 二叉树递归与分治

226. Invert Binary Tree (Easy)

Invert a binary tree.

Example:
Input:
     4
   /   \
  2     7
 / \   / \
1   3 6   9
Output:
     4
   /   \
  7     2
 / \   / \
9   6 3   1

Trivia:
This problem was inspired by this original tweet by Max Howell:
Google: 90% of our engineers use the software you wrote (Homebrew), but you can’t invert a binary tree on a whiteboard so f*** off.

递归3:

class Solution:
    def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
        if not root:
            return
        l = self.invertTree(root.left)
        r = self.invertTree(root.right)
        root.left, root.right = r, l
        return root

遍历:

class Solution:
    def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
        if not root:
            return
        stack = [(root)]
        while stack:
            p = stack.pop()
            p.left, p.right = p.right, p.left
            if p.left:
                stack.append((p.left))
            if p.right:
                stack.append((p.right))
        return root

递归1:

class Solution:
    def invertTree(self, root):
        if not root:
            return
        root.left, root.right = root.right, root.left
        self.invertTree(root.left)
        self.invertTree(root.right)
        return root

递归2

class Solution:
    def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
        if not root:
            return
        root.left, root.right = self.invertTree(root.right), self.invertTree(root.left)
        return root

Blind 75

100. Same Tree (Easy)

Given two binary trees, write a function to check if they are the same or not.
Two binary trees are considered the same if they are structurally identical and the nodes have the same value.

Example 1:
Input:     1         1
          / \       / \
         2   3     2   3

        [1,2,3],   [1,2,3]
Output: true

Example 2:
Input:     1         1
          /           \
         2             2

        [1,2],     [1,null,2]
Output: false

Example 3:
Input:     1         1
          / \       / \
         2   1     1   2

        [1,2,1],   [1,1,2]
Output: false

递归:

class Solution:
    def isSameTree(self, p: TreeNode, q: TreeNode) -> bool:
        if not p and not q:
            return True
        return p and q and p.val == q.val and self.isSameTree(p.left, q.left) and self.isSameTree(p.right, q.right)

遍历:

class Solution:
    def isSameTree(self, p: TreeNode, q: TreeNode) -> bool:
        if not p and not q:
            return True
        stack = [(p, q)]
        while stack:
            p, q = stack.pop(-1)
            if not p and not q:
                continue
            if (p and not q) or (q and not p) or p.val != q.val:
                return False
            stack.append((p.left, q.left))
            stack.append((p.right, q.right))
        return True

五刷:高频

101. Symmetric Tree (Easy)

Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).

For example, this binary tree [1,2,2,3,4,4,3] is symmetric:
    1
   / \
  2   2
 / \ / \
3  4 4  3
But the following [1,2,2,null,3,null,3] is not:
    1
   / \
  2   2
   \   \
   3    3

Note:
Bonus points if you could solve it both recursively and iteratively.

递归

class Solution:
    def isSymmetric(self, root: TreeNode) -> bool:
        def helper(l, r):
            if not l and not r:
                return True
            if (l and not r) or (not l and r):
                return False
            return l.val == r.val and helper(l.left, r.right) and helper(l.right, r.left)
        return helper(root.left, root.right)

遍历:

class Solution:
    def isSymmetric(self, root: Optional[TreeNode]) -> bool:
        stack = [(root.left, root.right)]
        while stack:
            (l, r) = stack.pop()
            if not l and not r:
                continue
            if l and not r or not l and r or l.val != r.val:
                return False
            if l and r:
                stack.append((l.left, r.right))
                stack.append((l.right, r.left))
        return True

9刷:高频

104. Maximum Depth of Binary Tree (Easy)

Given a binary tree, find its maximum depth.
The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
Note: A leaf is a node with no children.

Example:
Given binary tree [3,9,20,null,null,15,7],
    3
   / \
  9  20
    /  \
   15   7
return its depth = 3.

递归1:

class Solution:
    def maxDepth(self, root: Optional[TreeNode]) -> int:
        def helper(root, depth = 0):
            nonlocal ans
            ans = max(ans, depth)
            if root:
                helper(root.left, depth + 1)
                helper(root.right, depth + 1)
        ans = 0
        helper(root)
        return ans

遍历1:

class Solution:
    def maxDepth(self, root: Optional[TreeNode]) -> int:
        if not root:
            return 0
        ans = 0
        stack = [(root, 1)]
        while stack:
            root, cur = stack.pop()
            ans = max(ans, cur)
            if root.left:
                stack.append((root.left, cur + 1))
            if root.right:
                stack.append((root.right, cur + 1))
        return ans

递归2:

class Solution:
    def maxDepth(self, root: Optional[TreeNode]) -> int:
        if not root:
            return 0
        else:
            return max(self.maxDepth(root.left), self.maxDepth(root.right)) + 1

遍历2:

class Solution:
    def maxDepth(self, root: Optional[TreeNode]) -> int:
        if not root:
            return 0
        q = [root]
        ans = 0
        while q:
            nq = []
            for root in q:
                if root:
                    if root.left:
                        nq.append(root.left)
                    if root.right:
                        nq.append(root.right)
            ans += 1
            q = nq
        return ans

高频

111. Minimum Depth of Binary Tree (Easy)

Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
Note: A leaf is a node with no children.
Example:

Given binary tree [3,9,20,null,null,15,7],
    3
   / \
  9  20
    /  \
   15   7
return its minimum depth = 2.

递归

class Solution:
    def minDepth(self, root: Optional[TreeNode]) -> int:
        if not root:
            return 0
        def helper(root, depth):
            nonlocal ans
            if not root:
                return     
            if not root.left and not root.right:
                ans = min(ans, depth)
            helper(root.left, depth + 1)
            helper(root.right, depth + 1)
        ans = float('inf')
        helper(root, 1)
        return ans

遍历

class Solution:
    def minDepth(self, root: Optional[TreeNode]) -> int:
        if not root:
            return 0
        stack = [(root, 1)]
        ans = float('inf')
        while stack:
            root, depth = stack.pop()
            if not root.left and not root.right:
                ans = min(ans, depth)
            if root.left:
                stack.append((root.left, depth + 1))
            if root.right:
                stack.append((root.right, depth + 1))
        return ans

递归2:

class Solution:
    def minDepth(self, root: Optional[TreeNode]) -> int:
        if not root:
            return 0
        l = self.minDepth(root.left)
        r = self.minDepth(root.right)
        if not root.left:
            return r + 1
        if not root.right:
            return l + 1
        return min(l, r) + 1

高频

144. Binary Tree Preorder Traversal (Easy)

Given a binary tree, return the preorder traversal of its nodes' values.

Example:
Input: [1,null,2,3]
   1
    \
     2
    /
   3

Output: [1,2,3]

Follow up: Recursive solution is trivial, could you do it iteratively?

递归1:

class Solution:
    def preorderTraversal(self, root):
        def helper(root):
            if not root:
                return
            ans.append(root.val)
            helper(root.left)
            helper(root.right)
        ans = []
        helper(root)
        return ans

非递归1:

class Solution:
    def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        if not root:
            return []
        ans, stack = [], []
        while root or stack:
            if root:
                ans.append(root.val)
                stack.append(root)
                root = root.left
            else:
                root = stack.pop()
                root = root.right
        return ans

非递归2:

class Solution:
    def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        if not root:
            return []
        ans, stack = [], [root]
        while stack:
            root = stack.pop()
            ans.append(root.val)
            if root.right:
                stack.append(root.right)
            if root.left:
                stack.append(root.left)
        return ans

递归2:

class Solution:
    def preorderTraversal(self, root):
        if not root:
            return []
        l = self.preorderTraversal(root.left)
        r = self.preorderTraversal(root.right)
        return [root.val] + l + r

非递归3:

class Solution:
    def preorderTraversal(self, root):
        if not root:
            return []
        ans, stack = [], []
        while stack or root:
            if root:
                ans.append(root.val)
                if root.right:
                    stack.append(root.right)
                root = root.left
            else:
                root = stack.pop(-1)
        return ans

94. Binary Tree Inorder Traversal (Medium)

Given a binary tree, return the inorder traversal of its nodes' values.
Example:

Input: [1,null,2,3]
   1
    \
     2
    /
   3

Output: [1,3,2]

Follow up: Recursive solution is trivial, could you do it iteratively?

递归 Traverse:

class Solution:
    def inorderTraversal(self, root):
        ans = []
        def helper(root):
            if not root:
                return
            helper(root.left)
            ans.append(root.val)
            helper(root.right)
        helper(root)
        return ans

遍历:

class Solution:
    def inorderTraversal(self, root):
        if not root:
          return []
        ans = []
        stack = []
        while stack or root:
            if root:
                stack.append(root)
                root = root.left
            else:
                root = stack.pop(-1)
                ans.append(root.val)
                root = root.right
        return ans

递归 Divide and Conquer/backtracking 分治:

class Solution:
    def inorderTraversal(self, root):
        if not root:
            return []
        l = self.inorderTraversal(root.left)
        r = self.inorderTraversal(root.right)
        return l + [root.val] + r

八刷:高频, 遍历,stack初始为空,while root or stack: if root: 向左入栈到底 else: root出栈,root.val入ans,向右走...root = root.right

145. Binary Tree Postorder Traversal (Easy)

Given the root of a binary tree, return the postorder traversal of its nodes' values.

Example 1:
Binary Tree Postorder Traversal example1
Input: root = [1,null,2,3]
Output: [3,2,1]

Example 2:
Input: root = []
Output: []

Example 3:
Input: root = [1]
Output: [1]

Constraints:
The number of the nodes in the tree is in the range [0, 100].
-100 <= Node.val <= 100

Follow up: Recursive solution is trivial, could you do it iteratively?

递归:

class Solution:
    def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        def helper(root):
            if not root:
                return
            helper(root.left)
            helper(root.right)
            ans.append(root.val)
        ans = []
        helper(root)
        return ans

遍历:

class Solution:
    def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        if not root:
            return
        ans = []
        stack = []
        while root or stack:
            if root:
                stack.append(root)
                ans.append(root.val)
                root = root.right
            else:
                root = stack.pop()
                root = root.left
        return ans[::-1]
class Solution:
    def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        ans = []
        stack = [(root, False)]
        while stack:
            root, visited = stack.pop()
            if root:
                if visited:
                    ans.append(root.val)
                else:
                    stack.append((root, True))
                    stack.append((root.right, False))
                    stack.append((root.left, False))
        return ans
class Solution:
    def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        if not root:
            return []
        ans = []
        stack = [(root)]
        while stack:
            root = stack.pop()
            ans.append(root.val)
            if root.left:
                stack.append(root.left)
            if root.right:
                stack.append(root.right)
        return ans[::-1]

230. Kth Smallest Element in a BST (Medium)

Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.

Example 1:
Input: root = [3,1,4,null,2], k = 1
   3
  / \
 1   4
  \
   2
Output: 1

Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3
       5
      / \
     3   6
    / \
   2   4
  /
 1
Output: 3

Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?

递归:

class Solution:
    def kthSmallest(self, root: TreeNode, k: int) -> int:
        ans = None
        def helper(root):
            nonlocal k, ans
            if not root:
                return
            helper(root.left)
            k -= 1
            if k == 0:
                ans = root.val
                return
            helper(root.right)
        helper(root)
        return ans

遍历:

class Solution:
    def kthSmallest(self, root: TreeNode, k: int) -> int:
        stack = []
        while stack or root:
            if root:
                stack.append(root)
                root = root.left
            else:
                root = stack.pop()
                k -= 1
                if k == 0:
                    return root.val
                root = root.right

10刷:面经,Triplebyte, 维萨
Follow up: 二叉树经常被修改 如何优化 kthSmallest 这个操作? leetcode官方答案提出做一个类似LRU双链表的数据结构实现O(h + k)插删和查询

129. Sum Root to Leaf Numbers (Medium)

Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.
An example is the root-to-leaf path 1->2->3 which represents the number 123.
Find the total sum of all root-to-leaf numbers.
Note: A leaf is a node with no children.

Example:
Input: [1,2,3]
    1
   / \
  2   3
Output: 25
Explanation:
The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.
Therefore, sum = 12 + 13 = 25.

Example 2:
Input: [4,9,0,5,1]
    4
   / \
  9   0
 / \
5   1
Output: 1026
Explanation:
The root-to-leaf path 4->9->5 represents the number 495.
The root-to-leaf path 4->9->1 represents the number 491.
The root-to-leaf path 4->0 represents the number 40.
Therefore, sum = 495 + 491 + 40 = 1026.

递归:

class Solution:
    def sumNumbers(self, root: Optional[TreeNode]) -> int:
        def helper(root, cur):
            nonlocal ans
            if not root:
                return
            cur += root.val
            if not root.left and not root.right:
                ans += cur
            helper(root.left, cur * 10)
            helper(root.right, cur * 10)
        ans = 0
        helper(root, 0)
        return ans

遍历:

class Solution:
    def sumNumbers(self, root: Optional[TreeNode]) -> int:
        ans, stack = 0, [(root, 0)]
        while stack:
            root, cur = stack.pop()
            cur = cur * 10 + root.val
            if not root.left and not root.right:
                ans += cur
            if root.left:
                stack.append((root.left, cur))
            if root.right:
                stack.append((root.right, cur))
        return ans

8刷:高频

116. Populating Next Right Pointers in Each Node (Medium)

You are given a perfect binary tree where all leaves are on the same level, and every parent has two children. The binary tree has the following definition:

struct Node {
  int val;
  Node *left;
  Node *right;
  Node *next;
}

Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL.
Initially, all next pointers are set to NULL.
Example:
Populating Next Right Pointers example

递归:

class Solution:
    def connect(self, root: 'Node') -> 'Node':
        if not root:
            return root
        if root.left:
            root.left.next = root.right
            if root.next:
                root.right.next = root.next.left
        self.connect(root.right)
        self.connect(root.left)
        return root

六刷:高频,遍历允许用额外空间的话比较简单,就不写了,用O(1)额外空间的遍历写法与117题差不多

117. Populating Next Right Pointers in Each Node II (Medium)

Given a binary tree

struct Node {
  int val;
  Node *left;
  Node *right;
  Node *next;
}

Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL.
Initially, all next pointers are set to NULL.
Example:
Populating Next Right Pointers example II
Note:
You may only use constant extra space.
Recursive approach is fine, implicit stack space does not count as extra space for this problem.

原题链接不稳定,少量测试数据:

class Node:
    def __init__(self, val=0, left=None, right=None, next=None):
        self.val = val
        self.left = left
        self.right = right
        self.next = next

class Solution:
    def connect(self, root: 'Node') -> 'Node':
        # solution code here
        return

def verify(root):
    current = root
    while current:
        temp = current
        while temp:
            if temp.left and temp.right:
                if temp.left.next != temp.right:
                    return False
                if temp.right.next and temp.next:
                    if temp.right.next != temp.next.left and temp.next.left:
                        return False
            elif temp.left and not temp.right:
                if temp.left.next and temp.next:
                    if temp.left.next != temp.next.left:
                        return False
            elif temp.right and not temp.left:
                if temp.right.next and temp.next:
                    if temp.right.next != temp.next.left and temp.next.left:
                        return False
            temp = temp.next
        current = current.left

    return True

# Example 1: Given Example
#      1 -> NULL
#    /   \
#   2  ->  3 -> NULL
#  / \     \
# 4->5 ->  7 -> NULL
root1 = Node(1)
root1.left = Node(2)
root1.right = Node(3)
root1.left.left = Node(4)
root1.left.right = Node(5)
root1.right.right = Node(7)

solution = Solution()
solution.connect(root1)
print(f"Example 1: {verify(root1)}")  # Should print True

# Example 2: Perfect Binary Tree
#         1 -> NULL
#       /   \
#      2  ->  3 -> NULL
#     / \    / \
#    4-> 5->6-> 7 -> NULL
root2 = Node(1)
root2.left = Node(2)
root2.right = Node(3)
root2.left.left = Node(4)
root2.left.right = Node(5)
root2.right.left = Node(6)
root2.right.right = Node(7)

solution = Solution()
solution.connect(root2)
print(f"Example 2: {verify(root2)}")  # Should print True

# Example 3: Skewed Binary Tree
#         1 -> NULL
#        / 
#       2  -> NULL
#      /
#     3 -> NULL
#    /
#   4 -> NULL
root3 = Node(1)
root3.left = Node(2)
root3.left.left = Node(3)
root3.left.left.left = Node(4)

solution = Solution()
solution.connect(root3)
print(f"Example 3: {verify(root3)}")  # Should print True

# Example 4: Single Node Tree
# 1 -> NULL
root4 = Node(1)

solution = Solution()
solution.connect(root4)
print(f"Example 4: {verify(root4)}")  # Should print True

递归1,如果可用额外空间:

class Solution:
    def connect(self, root: 'Node') -> 'Node':
        def helper(root, depth):
            if not root:
                return
            if depth in left:
                left[depth].next = root
            left[depth] = root
            helper(root.left, depth + 1)
            helper(root.right, depth + 1)
        left = {}
        helper(root, 0)
        return root

递归2,不用额外空间:

class Solution:
    def connect(self, root: 'Node') -> 'Node':
        def helper(root: Node):
            if root:
                return root.left or root.right or helper(root.next)
        if root:
            if root.left:
                if root.right:
                    root.left.next = root.right
                else:
                    root.left.next = helper(root.next)

            if root.right:
                root.right.next = helper(root.next)
            self.connect(root.right)
            self.connect(root.left)
            return root

遍历1,如果可用额外空间:

class Solution:
    def connect(self, root: 'Node') -> 'Node':
        q = [root]
        while q:
            nq = []
            for i, root in enumerate(q):
                if i:
                    q[i - 1].next = root
                if root.left:
                    nq.append(root.left)
                if root.right:
                    nq.append(root.right)
            q = nq
        return root

遍历2,不用额外空间:

class Solution:
    def connect(self, root: 'Node') -> 'Node':
        if not root:
            return
        cur = root
        nextLevelHead = Node(0)
        while cur:
            p = nextLevelHead
            while cur:
                if cur.left:
                    p.next = cur.left
                    p = p.next
                if cur.right:
                    p.next = cur.right
                    p = p.next
                cur = cur.next
            cur = nextLevelHead.next
            nextLevelHead.next = None
        return root        

高频

110. Balanced Binary Tree (Easy)

Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

Example 1:
Given the following tree [3,9,20,null,null,15,7]:
    3
   / \
  9  20
    /  \
   15   7
Return true.

Example 2:
Given the following tree [1,2,2,3,3,null,null,4,4]:
       1
      / \
     2   2
    / \
   3   3
  / \
 4   4
Return false.

递归1:

class Solution:
    def isBalanced(self, root: Optional[TreeNode]) -> bool:
        def helper(root):
            nonlocal ans
            if not root:
                return 0
            l = helper(root.left)
            r = helper(root.right)
            if abs(l - r) > 1:
                ans = False
            return max(l, r) + 1
        ans = True
        helper(root)
        return ans

遍历1:

class Solution:
    def isBalanced(self, root: Optional[TreeNode]) -> bool:
        if not root:
            return True
        stack = [(root, False)]
        depth = {None: 0}
        while stack:
            root, visited = stack.pop()
            if visited:
                l, r = depth[root.left], depth[root.right]
                if abs(l - r) > 1:
                    return False
                depth[root] = max(l, r) + 1
            elif root:
                stack.append((root, True))
                stack.append((root.left, False))
                stack.append((root.right, False))
        return True

遍历2:

class Solution:
    def isBalanced(self, root: Optional[TreeNode]) -> bool:
        if not root:
            return True
        stack = [root]
        depth = {None: 0}
        while stack:
            root = stack[-1]
            if root.left in depth and root.right in depth:
                l, r = depth[root.left], depth[root.right]
                if abs(l - r) > 1:
                    return False
                depth[root] = max(l, r) + 1
                stack.pop()
            if root.left not in depth:
                stack.append(root.left)
            if root.right not in depth:
                stack.append(root.right)
        return True

递归2:

class Solution:
    def isBalanced(self, root: Optional[TreeNode]) -> bool:
        def helper(root):
            if not root:
                return 0
            hl = helper(root.left)
            hr = helper(root.right)
            return max(hl, hr) + 1
        if not root:
            return True
        hl = helper(root.left)
        hr = helper(root.right)
        return abs(hl - hr) <= 1 and self.isBalanced(root.left) and self.isBalanced(root.right)

递归3:

class Solution:
    def isBalanced(self, root: Optional[TreeNode]) -> bool:
        def helper(root):
            if not root:
                return 0
            l = helper(root.left)
            r = helper(root.right)
            if l < 0 or r < 0 or abs(l - r) > 1:
                return -1
            return max(l, r) + 1
        return helper(root) >= 0

递归4:

class Solution:
    def isBalanced(self, root: Optional[TreeNode]) -> bool:
        def helper(root):
            if not root:
                return 0, True
            l, leftBalanced = helper(root.left)
            r, rightBalanced = helper(root.right)
            return max(l, r) + 1, leftBalanced and rightBalanced and abs(l - r) <= 1
        return helper(root)[1]

高频

543. Diameter of Binary Tree (Easy)

Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root.

Example:
Given a binary tree
          1
         / \
        2   3
       / \
      4   5
Return 3, which is the length of the path [4,2,1,3] or [5,2,1,3].

Note: The length of path between two nodes is represented by the number of edges between them.

递归1:

class Solution:
    def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int:
        def helper(root):
            nonlocal ans
            if not root:
                return 0
            l = helper(root.left)
            r = helper(root.right)
            ans = max(ans, l + r)
            return max(l, r) + 1
        ans = 0
        helper(root)
        return ans

遍历1:

class Solution:
    def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int:
        ans = 0
        stack = [(root, False)]
        depth = {None: 0}
        while stack:
            root, visited = stack.pop()
            if root:
                if visited:
                    l = depth[root.left]
                    r = depth[root.right]
                    ans = max(ans, l + r)
                    depth[root] = max(l, r) + 1
                else:
                    stack.append((root, True))
                    stack.append((root.left, False))
                    stack.append((root.right, False))
        return ans

遍历2:

class Solution:
    def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int:
        ans = 0
        stack = [root]
        depth = {None: 0}
        while stack:
            root = stack[-1]
            if root.left in depth and root.right in depth:
                l = depth[root.left]
                r = depth[root.right]
                ans = max(ans, l + r)
                depth[root] = max(l, r) + 1
                stack.pop()
            if root.left not in depth:
                stack.append(root.left)
            if root.right not in depth:
                stack.append(root.right)
        return ans

递归2:

class Solution:
    def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int:
        def helper(root):
            if not root: 
                return 0, 0
            leftDepth, leftDiameter = helper(root.left)
            rightDepth, rightDiameter = helper(root.right)
            return max(leftDepth, rightDepth) + 1, max(leftDiameter, rightDiameter, leftDepth + rightDepth)
        return helper(root)[1]

高频

108. Convert Sorted Array to Binary Search Tree (Easy)

Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

Example:
Given the sorted array: [-10,-3,0,5,9],
One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:

      0
     / \
   -3   9
   /   /
 -10  5

递归

class Solution:
    def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
        def helper(l, r):
            if l <= r:
                mid = (l + r) // 2
                root = TreeNode(nums[mid])
                root.left = helper(l, mid - 1)
                root.right = helper(mid + 1, r)
                return root
        return helper(0, len(nums) - 1)

遍历

class Solution:
    def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
        root = TreeNode()
        stack = [(root, 0, len(nums) - 1)]
        while stack:
            p, l, r = stack.pop()
            mid = (l + r) // 2
            p.val = nums[mid]
            if l < mid:
                p.left = TreeNode()
                stack.append((p.left, l, mid - 1))
            if mid < r:
                p.right = TreeNode()
                stack.append((p.right, mid + 1, r))
        return root

递归

class Solution:
    def sortedArrayToBST(self, nums: List[int]) -> TreeNode:
        if not nums:
            return
        mid = len(nums) // 2
        root = TreeNode(nums[mid])
        root.left = self.sortedArrayToBST(nums[:mid])
        root.right = self.sortedArrayToBST(nums[mid + 1:])
        return root

高频; 面经: Amazon

109. Convert Sorted List to Binary Search Tree (Medium)

Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

Example:
Given the sorted linked list: [-10,-3,0,5,9],
One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:

      0
     / \
   -3   9
   /   /
 -10  5

解法3:space: O(1): time: O(nlogn)

class Solution:
    def sortedListToBST(self, head: Optional[ListNode]) -> Optional[TreeNode]:
        def helper(l, r):
            if l == r:
                return
            s = f = l
            while f != r and f.next != r:
                s = s.next
                f = f.next.next
            root = TreeNode(s.val)
            root.left = helper(l, s)
            root.right = helper(s.next, r)
            return root
        return helper(head, None)

解法2:space: O(n); time : O(n)

class Solution:
    def sortedListToBST(self, head: Optional[ListNode]) -> Optional[TreeNode]:
        def helper(l, r):
            if l > r:
                return
            root_i = (l + r) // 2
            root = TreeNode(nums[root_i])
            root.left = helper(l, root_i - 1)
            root.right = helper(root_i + 1, r)
            return root
        nums = []
        while head:
            nums.append(head.val)
            head = head.next
        return helper(0, len(nums) - 1)

解法1:space: O(1): time: O(nlogn)

class Solution:
    def sortedListToBST(self, head: Optional[ListNode]) -> Optional[TreeNode]:
        def helper(l, r):
            if l == r:
                return
            s = f = dummy = ListNode()
            dummy.next = l
            while f != r and f.next != r:
                s = s.next
                f = f.next.next
            root = TreeNode(s.val)
            root.left = helper(l, s)
            root.right = helper(s.next, r)
            return root
        return helper(head, None)

Blind 75; 高频

112. Path Sum (Easy)

Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
Note: A leaf is a node with no children.

Example:
Given the below binary tree and sum = 22,

      5
     / \
    4   8
   /   / \
  11  13  4
 /  \      \
7    2      1
return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.
class Solution:
    def hasPathSum(self, root: TreeNode, sum: int) -> bool:
        if not root:
            return False
        ans = False
        def helper(root, cur):
            nonlocal ans
            if not root:
                return
            cur -= root.val
            if not root.left and not root.right:
                if cur == 0:
                    ans =  True
                return
            helper(root.left, cur)
            helper(root.right, cur)
        helper(root, sum)
        return ans

七刷:高频,面经,Quora

199. Binary Tree Right Side View (Medium)

Given a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.

Example:
Input: [1,2,3,null,5,null,4]
Output: [1, 3, 4]
Explanation:

   1            <---
 /   \
2     3         <---
 \     \
  5     4       <---

递归:

class Solution:
    def rightSideView(self, root: TreeNode) -> List[int]:
        def dfs(root, depth):
            if not root:
                return
            if len(ans) < depth:
                ans.append(root.val)
            dfs(root.right, depth + 1)
            dfs(root.left, depth + 1)
        ans = []
        dfs(root, 1)
        return ans

遍历:

class Solution:
    def rightSideView(self, root: TreeNode) -> List[int]:
        if not root:
            return []
        ans = []
        q = [root]
        while q:
            ans.append(q[-1].val)
            nq = []
            for root in q:
                if root.left:
                    nq.append(root.left)
                if root.right:
                    nq.append(root.right)
            q = nq
        return ans

6刷:面经, 维萨

235. Lowest Common Ancestor of a Binary Search Tree (Easy)

Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Given binary search tree: root = [6,2,8,0,4,7,9,null,null,3,5]
LCA of BST example
Example 1:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.

Example 2:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
Output: 2
Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.

Note:
All of the nodes' values will be unique.
p and q are different and both values will exist in the BST.

class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
        if p.val > q.val:
            p, q = q, p
        if p.val <= root.val <= q.val:
            return root
        if root.val < p.val:
            return self.lowestCommonAncestor(root.right, p, q)
        if root.val > q.val:
            return self.lowestCommonAncestor(root.left, p, q)
class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
        if p.val > q.val:
            p, q = q, p
        if root.val < p.val:
            return self.lowestCommonAncestor(root.right, p, q)
        if root.val > q.val:
            return self.lowestCommonAncestor(root.left, p, q)
        return root
class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode': 
        if root.val < p.val and root.val < q.val:
            return self.lowestCommonAncestor(root.right, p, q)
        if root.val > p.val and root.val > q.val:
            return self.lowestCommonAncestor(root.left, p, q)
        return root
class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode': 
        while True:
            if root.val < p.val and root.val < q.val:
                root = root.right
            elif root.val > p.val and root.val > q.val:
                root = root.left
            else:
                return root

注意要return f(),否则会return最顶上的root

563. Binary Tree Tilt (Easy)

Given a binary tree, return the tilt of the whole tree.
The tilt of a tree node is defined as the absolute difference between the sum of all left subtree node values and the sum of all right subtree node values. Null node has tilt 0.
The tilt of the whole tree is defined as the sum of all nodes' tilt.

Example:

Input:
         1
       /   \
      2     3
Output: 1

Explanation:
Tilt of node 2 : 0
Tilt of node 3 : 0
Tilt of node 1 : |2-3| = 1
Tilt of binary tree : 0 + 0 + 1 = 1
Note:
The sum of node values in any subtree won't exceed the range of 32-bit integer.
All the tilt values won't exceed the range of 32-bit integer.

class Solution:
    def findTilt(self, root: TreeNode) -> int:
        if not root:
            return 0
        ans = 0
        def helper(root):
            nonlocal ans
            if not root:
                return 0
            l = helper(root.left)
            r = helper(root.right)
            ans += abs(l - r)
            return l + r + root.val
        helper(root)
        return ans

六刷:O(n)

669. Trim a Binary Search Tree (Easy)

Given a binary search tree and the lowest and highest boundaries as L and R, trim the tree so that all its elements lies in [L, R] (R >= L). You might need to change the root of the tree, so the result should return the new root of the trimmed binary search tree.

Example 1:
Input:
    1
   / \
  0   2
  L = 1
  R = 2
Output:
    1
      \
       2

Example 2:
Input:
    3
   / \
  0   4
   \
    2
   /
  1
  L = 1
  R = 3
Output:
      3
     /
   2
  /
 1
class Solution:
    def trimBST(self, root: TreeNode, L: int, R: int) -> TreeNode:
        if not root:
            return
        l = self.trimBST(root.left, L, R)
        r = self.trimBST(root.right, L, R)
        root.left, root.right = l, r
        if L <= root.val <= R:
            return root
        if root.val < L:
            return r
        if root.val > R:
            return l

10刷:每层三种情况:1:小于最小,则返回右子树传上来的root;2:大于最大,则返回左子树传上来的root;3.大小之间,将root返回上层

687. Longest Univalue Path (Medium)

Given a binary tree, find the length of the longest path where each node in the path has the same value. This path may or may not pass through the root.
The length of path between two nodes is represented by the number of edges between them.

Example 1:
Input:
              5
             / \
            4   5
           / \   \
          1   1   5
Output: 2

Example 2:
Input:
              1
             / \
            4   5
           / \   \
          4   4   5
Output: 2

Note: The given binary tree has not more than 10000 nodes. The height of the tree is not more than 1000.

class Solution:
    def longestUnivaluePath(self, root: TreeNode) -> int:
        def dfs(root):
            nonlocal ans
            if not root:
                return 0
            l = dfs(root.left)
            r = dfs(root.right)
            lp, rp = 0, 0
            if root.left and root.val == root.left.val:
                lp = l + 1
            if root.right and root.val == root.right.val:
                rp = r + 1
            ans = max(ans, lp + rp)
            return max(lp, rp)
        ans = 0
        dfs(root)
        return ans 

写法2:

class Solution:
    def longestUnivaluePath(self, root: TreeNode) -> int:
        def dfs(root, pre):
            nonlocal ans
            if not root:
                return 0
            l = dfs(root.left, root)
            r = dfs(root.right, root)
            ans = max(ans, l + r)
            if pre and pre.val == root.val:
                return max(l, r) + 1
            return 0
        ans = 0
        dfs(root, None)
        return ans

16刷:写法1:l, r左右各自递归后lp = rp = 0; if ...: lp = l + 1...ans = max(ans, lp + rp) return max(lp, rp)。写法2:f(root, pre) 当前层无法判断是否左右子节点都相等,但是因为如果有一边子节点不相等会将l或r返回为0,那么ans = max(ans, l + r)即可获得想要的答案

114. Flatten Binary Tree to Linked List (Medium)

Given a binary tree, flatten it to a linked list in-place.

For example, given the following tree:
    1
   / \
  2   5
 / \   \
3   4   6
The flattened tree should look like:
1
 \
  2
   \
    3
     \
      4
       \
        5
         \
          6

解法1:

class Solution:
    def flatten(self, root: TreeNode) -> None:
        if not root:
            return
        l = self.flatten(root.left)
        r = self.flatten(root.right)
        if l:
            root.right = l
            root.left = None
            while l.right:
                l = l.right
            l.right = r
        return root

九刷:高频

236. Lowest Common Ancestor of a Binary Tree (Medium)

Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Given the following binary tree: root = [3,5,1,6,2,0,8,null,null,7,4]

        _______3______
       /              \
    ___5__          ___1__
   /      \        /      \
   6      _2       0       8
         /  \
         7   4

Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
Explanation: The LCA of of nodes 5 and 1 is 3.

Example 2:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output: 5
Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself
according to the LCA definition.

Note:
All of the nodes' values will be unique.
p and q are different and both values will exist in the binary tree.

递归:

class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
        if not root:
            return
        if root == p or root == q:
            return root
        l = self.lowestCommonAncestor(root.left, p, q)
        r = self.lowestCommonAncestor(root.right, p, q)
        if l and r:
            return root
        return l or r

遍历:

class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
        parent = {root: None}
        stack = [root]
        while stack:
            cur = stack.pop()
            if cur.left:
                parent[cur.left] = cur
                stack.append(cur.left)
            if cur.right:
                parent[cur.right] = cur
                stack.append(cur.right)
        ancestors = set([p])
        while p:
            ancestors.add(p)
            p = parent[p]
        while q not in ancestors:
            q = parent[q]
        return q

14刷:递归:注意最后返回root需要if l and r这个条件。遍历:遍历,建立parent关系,p存入ancestors,遍历p的parent入ancestors,遍历q和q的parent,在ancestors中即返回

285. Inorder Successor in BST (Medium) 带锁

LinC 448. Inorder Successor in BST (Medium)
Given a binary search tree and a node in it, find the in-order successor of that node in the BST.
If the given node has no in-order successor in the tree, return null.
It's guaranteed p is one node in the given tree. (You can directly compare the memory address to find p)

Example
Given tree = [2,1] and node = 1:
  2
 /
1
return node 2.

Given tree = [2,1,3] and node = 2:
  2
 / \
1   3
return node 3.

Challenge
O(h), where h is the height of the BST.

O(h)

class Solution:
    def inorderSuccessor(self, root, p):
        if not root:
            return
        suc = None
        while root != p:
            if root.val < p.val:
                root = root.right
            else:
                suc = root
                root = root.left
        if not root.right:
            return suc
        root = root.right
        while root.left:
            root = root.left
        return root

O(n):

    def inorderSuccessor(self, root, p):
        def dfs(root):
            nonlocal inPre, ans
            if not root:
                return
            dfs(root.left)
            if inPre == p:
                ans = root
            inPre = root
            dfs(root.right)
        ans, inPre = None, None
        dfs(root)
        return ans

O(n)遍历:

class Solution:
    def inorderSuccessor(self, root, p):
        pre = None
        stack = []
        while root or stack:
            if root:
                stack.append(root)
                root = root.left
            else:
                root = stack.pop()
                if pre == p:
                    return root
                pre = root
                root = root.right

O(n)递归2:

class Solution:
    def inorderSuccessor(self, root, p):
        found = False
        ans = None
        def helper(root):
            nonlocal found, ans
            if not root:
                return
            helper(root.left)
            if found:
                ans = root
                found = False
            if  root == p:
                found = True
            helper(root.right)
        helper(root)
        return ans

13刷:递归O(n)解法:注意:处理p == inPre需要在递归调用左子树之后,否则pre为空;找到ans以后如果想return需要将inPre = None,否则会锁定inPre,导致上层的 inPre == p,而将上层的root赋值到ans中。
O(h)解法:找p的successor,那么如果root比p小p在右子树,反之p在左子树,去左子树之前要记一下suc节点,以防找到的root.val == p.val节点无右节点(即需要返回上层的suc)。如有右节点,则返回右节点中最小的(往右走一个然后返回最左节点)

98. Validate Binary Search Tree (Medium)

Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node's key.
The right subtree of a node contains only nodes with keys greater than the node's key.
Both the left and right subtrees must also be binary search trees.

Example 1:
Input:
    2
   / \
  1   3
Output: true

Example 2:

    5
   / \
  1   4
     / \
    3   6
Output: false

Explanation: The input is: [5,1,4,null,null,3,6]. The root node's value
             is 5 but its right child's value is 4.

递归:

class Solution:
    def isValidBST(self, root: Optional[TreeNode]) -> bool:
        def helper(root, l, h):
            if not root:
                return True
            return l < root.val < h and helper(root.left, l, root.val) and helper(root.right, root.val, h) 
        return helper(root, float('-inf'), float('inf'))

遍历:

class Solution:
    def isValidBST(self, root: Optional[TreeNode]) -> bool:
        if not root:
            return True
        stack = [(root, float('-inf'), float('inf'))]
        while stack:
            root, l, h = stack.pop()
            if root.val <= l or root.val >= h:
                return False
            if root.left:
                stack.append((root.left, l, root.val))
            if root.right:
                stack.append((root.right, root.val, h))
        return True

inorder 中序遍历:

class Solution:
    def isValidBST(self, root):
        stack = []
        pre = None
        while root or stack:
            if root:
                stack.append(root)
                root = root.left
            else:
                root = stack.pop(-1)
                if pre and pre.val >= root.val:
                    return False
                pre = root
                root = root.right
        return True

inorder 中序递归:

class Solution:
    def isValidBST(self, root: TreeNode) -> bool:
        def in_order(root):
            nonlocal pre, ans
            if not root:
                return
            in_order(root.left)
            if pre and pre.val >= root.val:
                ans = False
                return
            pre = root
            in_order(root.right)
        pre = None
        ans = True
        inorder(root)
        return ans

inorder 中序递归额外数组:

class Solution:
    def isValidBST(self, root: Optional[TreeNode]) -> bool:
        def in_order(root):
            if not root:
                return
            in_order(root.left)
            res.append(root.val)
            in_order(root.right)
        res = []
        in_order(root)
        for i in range(1, len(res)):
            if res[i] <= res[i - 1]:
                return False
        return True

高频

572. Subtree of Another Tree (Easy)

Given two non-empty binary trees s and t, check whether tree t has exactly the same structure and node values with a subtree of s. A subtree of s is a tree consists of a node in s and all of this node's descendants. The tree s could also be considered as a subtree of itself.

Example 1:
Given tree s:
     3
    / \
   4   5
  / \
 1   2
Given tree t:
   4
  / \
 1   2
Return true, because t has the same structure and node values with a subtree of s.

Example 2:
Given tree s:

     3
    / \
   4   5
  / \
 1   2
    /
   0
Given tree t:
   4
  / \
 1   2
Return false.
class Solution:
    def isSubtree(self, root: Optional[TreeNode], subRoot: Optional[TreeNode]) -> bool:
        def helper(r1, r2):
            if not r1 and not r2:
                return True
            return r1 and r2 and r1.val == r2.val and helper(r1.left, r2.left) and helper(r1.right, r2.right)
        if not root:
            return not subRoot
        return helper(root, subRoot) or self.isSubtree(root.left, subRoot) or self.isSubtree(root.right, subRoot)

Blind 75; 高频

606. Construct String from Binary Tree (Easy)

You need to construct a string consists of parenthesis and integers from a binary tree with the preorder traversing way.
The null node needs to be represented by empty parenthesis pair "()". And you need to omit all the empty parenthesis pairs that don't affect the one-to-one mapping relationship between the string and the original binary tree.

Example 1:
Input: Binary tree: [1,2,3,4]
       1
     /   \
    2     3
   /
  4
Output: "1(2(4))(3)"
Explanation: Originallay it needs to be "1(2(4)())(3()())",
but you need to omit all the unnecessary empty parenthesis pairs.
And it will be "1(2(4))(3)".

Example 2:
Input: Binary tree: [1,2,3,null,4]
       1
     /   \
    2     3
     \
      4

Output: "1(2()(4))(3)"
Explanation: Almost the same as the first example,
except we can't omit the first parenthesis pair to break the one-to-one mapping relationship between the input and the output.

写法1:

class Solution:
    def tree2str(self, t: TreeNode) -> str:
        if not t:
            return ''
        l = self.tree2str(t.left)
        r = self.tree2str(t.right)
        if r:
            return f"{t.val}({l})({r})"
        elif l:
            return f"{t.val}({l})"
        else:
            return f"{t.val}"

写法2:

class Solution:
    def tree2str(self, t: TreeNode) -> str:
        def helper(root):
            nonlocal ans
            if not root:
                return
            ans += str(root.val)
            if root.right:
                ans += '('
                helper(root.left)
                ans += ')('
                helper(root.right)
                ans += ')'
            elif root.left:
                ans += '('
                helper(root.left)
                ans += ')'
        ans = ''
        helper(t)
        return ans

11刷

297. Serialize and Deserialize Binary Tree (Hard)

Serialization is the process of converting a data structure or object into a sequence of bits so that it can be stored in a file or memory buffer, or transmitted across a network connection link to be reconstructed later in the same or another computer environment.
Design an algorithm to serialize and deserialize a binary tree. There is no restriction on how your serialization/deserialization algorithm should work. You just need to ensure that a binary tree can be serialized to a string and this string can be deserialized to the original tree structure.

Example:
You may serialize the following tree:
    1
   / \
  2   3
     / \
    4   5
as "[1,2,3,null,null,4,5]"

Clarification: The above format is the same as how LeetCode serializes a binary tree. You do not necessarily need to follow this format, so please be creative and come up with different approaches yourself.
Note: Do not use class member/global/static variables to store states. Your serialize and deserialize algorithms should be stateless.

dfs递归:

class Codec:
    def serialize(self, root):
        if not root:
            return '#'
        return f"{root.val}/{self.serialize(root.left)}/{self.serialize(root.right)}"

    def deserialize(self, data):
        if data == '#':
            return
        dq = deque(data.split('/'))
        def helper():
            if dq:
                root_v = dq.popleft()
                if root_v != '#':
                    root = TreeNode(root_v)
                    root.left = helper()
                    root.right = helper()
                    return root
        return helper()

bfs:

class Codec:
    def serialize(self, root):
        if not root:
            return '#'
        q = deque([root])
        res = []
        while q:
            root = q.popleft()
            if root:
                res.append(str(root.val))
                q.append(root.left)
                q.append(root.right)
            else:
                res.append('#')
        return '/'.join(res)
        

    def deserialize(self, data):
        if data == '#':
            return
        data = deque(data.split('/'))
        root = TreeNode(data.popleft())
        root_q = deque([root])
        while data:
            p = root_q.popleft()
            root_v = data.popleft()
            if root_v != '#':
                p.left = TreeNode(root_v)
                root_q.append(p.left)
            root_v = data.popleft()
            if root_v != '#':
                p.right = TreeNode(root_v)
                root_q.append(p.right)
        return root

dfs遍历:

class Codec:
    def serialize(self, root):
        if not root:
            return '#'
        stack = []
        res = []
        while root or stack:
            if root:
                res.append(str(root.val))
                stack.append(root)
                root = root.left
            else:
                root = stack.pop()
                res.append('#')
                root = root.right
        return '/'.join(res)
        

    def deserialize(self, data):
        if data == '#':
            return
        data = deque(data.split('/'))
        root = p = TreeNode(data.popleft())
        stack = []
        while data:
            root_v = data.popleft()
            if p:
                stack.append(p)
                if root_v != '#':
                    p.left = TreeNode(root_v)
                p = p.left
            else:
                p = stack.pop()
                if root_v != '#':
                    p.right = TreeNode(root_v)
                p = p.right
        return root

Blind 75

536. Construct Binary Tree from String (Medium) 带锁

LinC 880. Construct Binary Tree from String (Medium)
You need to construct a binary tree from a string consisting of parenthesis and integers.
The whole input represents a binary tree. It contains an integer followed by zero, one or two pairs of parenthesis. The integer represents the root's value and a pair of parenthesis contains a child binary tree with the same structure.
You always start to construct the left child node of the parent first if it exists.

Example 1:
Input: "-4(2(3)(1))(6(5))"
Output: {-4,2,6,3,1,5}
Explanation:
The output is look like this:
      -4
     /  \
    2    6
   / \   /
  3   1 5

Example 2:
Input: "1(-1)"
Output: {1,-1}
Explanation:
The output is look like this:
     1
    /
  -1

Notice
There will only be '(', ')', '-' and '0' ~ '9' in the input string.
An empty tree is represented by "" instead of "()".

class Solution:
    def str2tree(self, s):
        if not s:
            return
        stack = []
        i = 0
        while i < len(s):
            cur = ''
            while s[i] and s[i] not in '()':
                cur += s[i]
                i += 1
            if cur:
                root = TreeNode(int(cur))
                if stack:
                    if stack[-1].left:
                        stack[-1].right = root
                    else:
                        stack[-1].left = root
                stack.append(root)
            if s[i] == ")":
                stack.pop()
            i += 1
        return stack[0]

七刷:Facebook tag,递归的方法不适合面试时写,将此较好想的方法写熟。注意:string没有pop()

105. Construct Binary Tree from Preorder and Inorder Traversal (Medium)

Given preorder and inorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.

For example, given
preorder = [3,9,20,15,7]
inorder = [9,3,15,20,7]
Return the following binary tree:

    3
   / \
  9  20
    /  \
   15   7

写法2:O(n) time and space

class Solution:
    def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]:
        in_idx = {v: i for i, v in enumerate(inorder)}
        def helper(pl, pr, il, ir):
            if pl <= pr and il <= ir:
                root = TreeNode(preorder[pl])
                r_i = in_idx[root.val]
                l_len = r_i - il
                root.left = helper(pl + 1, pl + l_len, il, r_i - 1)
                root.right = helper(pl + l_len + 1, pr, r_i + 1, ir)
                return root
        return helper(0, len(preorder) - 1, 0, len(inorder) - 1)

写法1:O(n^2) time and space

class Solution:
    def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]:
        if preorder:
            root = TreeNode(preorder[0])
            l_len = inorder.index(root.val)
            root.left = self.buildTree(preorder[1:l_len + 1], inorder[:l_len])
            root.right = self.buildTree(preorder[l_len + 1:], inorder[l_len + 1:])
            return root

Blind 75; 高频

106. Construct Binary Tree from Inorder and Postorder Traversal (Medium)

Given inorder and postorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.

For example, given
inorder = [9,3,15,20,7]
postorder = [9,15,7,20,3]
Return the following binary tree:

    3
   / \
  9  20
    /  \
   15   7

O(n^2) time and space:

class Solution:
    def buildTree(self, inorder: List[int], postorder: List[int]) -> TreeNode:
        if not postorder:
            return
        root = TreeNode(postorder[-1])
        lLen = inorder.index(postorder[-1])
        root.left = self.buildTree(inorder[:lLen], postorder[:lLen])
        root.right = self.buildTree(inorder[lLen + 1:], postorder[lLen:-1])
        return root

O(n) time and space:

class Solution:
    def buildTree(self, inorder: List[int], postorder: List[int]) -> TreeNode:
        if not postorder:
            return
        iMap = {}
        for i, v in enumerate(inorder):
            iMap[v] = i
        def helper(inS, inE, postS, postE):
            if inS > inE:
                return
            root = TreeNode(postorder[postE])
            ilE = iMap[root.val] - 1
            plE = postS + ilE - inS                
            root.left = helper(inS, ilE, postS, plE)
            root.right = helper(ilE + 2, inE, plE + 1, postE - 1)
            return root
        return helper(0, len(inorder) - 1, 0, len(postorder) - 1)

七刷: 高频

889. Construct Binary Tree from Preorder and Postorder Traversal (Medium)

Return any binary tree that matches the given preorder and postorder traversals.
Values in the traversals pre and post are distinct positive integers.

Example 1:
Input: pre = [1,2,4,5,3,6,7], post = [4,5,2,6,7,3,1]
Output: [1,2,3,4,5,6,7]

Note:
1 <= pre.length == post.length <= 30
pre[] and post[] are both permutations of 1, 2, ..., pre.length.
It is guaranteed an answer exists. If there exists multiple answers, you can return any of them.

O(n)时间和空间解:

class Solution:
    def constructFromPrePost(self, pre: List[int], post: List[int]) -> TreeNode:
        if not pre:
            return
        iMap = {}
        for i, v in enumerate(post):
            iMap[v] = i
        def helper(preS, preE, postS, postE):
            if preS > preE:
                return
            root = TreeNode(pre[preS])
            if preS < preE:
                lEIPost = iMap[pre[preS + 1]]
                lEIPre = preS + 1 + lEIPost - postS
                root.left = helper(preS + 1, lEIPre, postS, lEIPost)
                root.right = helper(lEIPre + 1, preE, lEIPost + 1, postE - 1)
            return root
        return helper(0, len(pre) - 1, 0, len(post) - 1)

六刷:Facebook tag。需要一个insight:root in left subtree of pre show up last in left subtree of post

865. Smallest Subtree with all the Deepest Nodes (Medium)

Given a binary tree rooted at root, the depth of each node is the shortest distance to the root.
A node is deepest if it has the largest depth possible among any node in the entire tree.
The subtree of a node is that node, plus the set of all descendants of that node.
Return the node with the largest depth such that it contains all the deepest nodes in its subtree.

Example 1:
Input: [3,5,1,6,2,0,8,null,null,7,4]
Output: [2,7,4]
Explanation:
Smallest Subtree with all the Deepest Nodes example
We return the node with value 2, colored in yellow in the diagram.
The nodes colored in blue are the deepest nodes of the tree.
The input "[3, 5, 1, 6, 2, 0, 8, null, null, 7, 4]" is a serialization of the given tree.
The output "[2, 7, 4]" is a serialization of the subtree rooted at the node with value 2.
Both the input and output have TreeNode type.

Note:
The number of nodes in the tree will be between 1 and 500.
The values of each node are unique.

class Solution:
    def subtreeWithAllDeepest(self, root: TreeNode) -> TreeNode:
        def helper(root, pre, depth):
            nonlocal maxDepth, deepest
            if not root:
                return
            if depth == maxDepth:
                deepest.append(root)
            elif depth > maxDepth:
                maxDepth = depth
                deepest = [root]
            parent[root] = pre
            helper(root.left, root, depth + 1)
            helper(root.right, root, depth + 1)
        parent = {}
        deepest = []
        maxDepth = 0
        helper(root, None, 1)
        while len(deepest) > 1:
            deepest = set([parent[n] for n in deepest])
        return list(deepest)[0]

10刷:Facebook tag

426. Convert Binary Search Tree to Sorted Doubly Linked List (Medium) 带锁

Linc 1534. Convert Binary Search Tree to Sorted Doubly Linked List

Convert a BST to a sorted circular doubly-linked list in-place. Think of the left and right pointers as synonymous to the previous and next pointers in a doubly-linked list.
Let's take the following BST as an example, it may help you understand the problem better:
bstdll original bst example
We want to transform this BST into a circular doubly linked list. Each node in a doubly linked list has a predecessor and successor. For a circular doubly linked list, the predecessor of the first element is the last element, and the successor of the last element is the first element.
The figure below shows the circular doubly linked list for the BST above. The "head" symbol means the node it points to is the smallest element of the linked list.
bstdll return dll example
Specifically, we want to do the transformation in place. After the transformation, the left pointer of the tree node should point to its predecessor, and the right pointer should point to its successor. We should return the pointer to the first element of the linked list.
The figure below shows the transformed BST. The solid line indicates the successor relationship, while the dashed line means the predecessor relationship.
bstdll return bst example

Example 1:
Input: {4,2,5,1,3}
        4
       /  \
      2   5
     / \
    1   3
Output: "left:1->5->4->3->2  right:1->2->3->4->5"
Explanation:
Left: reverse output
Right: positive sequence output

Example 2:
Input: {2,1,3}
        2
       /  \
      1   3
Output: "left:1->3->2  right:1->2->3"
"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""
class Solution:
    def treeToDoublyList(self, root):
        if not root:
            return
        head = None
        pre = None
        def helper(root):
            nonlocal head, pre
            if not root:
                return
            helper(root.left)
            if not head:
                head = root
            if pre:
                root.left = pre
                pre.right = root
            pre = root
            helper(root.right)
        helper(root)
        head.left = pre
        pre.right = head
        return head

四刷:Facebook tag。中序遍历可以升序遍历。连接相邻结点,需要用变量 pre 记录上一个遍历到的结点。需要变量head来指向最小(最左)的节点。在递归函数中,先判空,之后对左子结点递归调用,一直递归到最左结点。此时如果 head 为空的话,那么当前就是最左结点,赋值给 head 然后给 pre,对于之后遍历到的结点,就可以和 pre 接上

298. Binary Tree Longest Consecutive Sequence (Medium) 带锁

LinC 595. Binary Tree Longest Consecutive Sequence
Given a binary tree, find the length of the longest consecutive sequence path.
The path refers to any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The longest consecutive path need to be from parent to child (cannot be the reverse).

Example
Example 1:
Input:
   1
    \
     3
    / \
   2   4
        \
         5
Output:3
Explanation:
Longest consecutive sequence path is 3-4-5, so return 3.

Example 2:
Input:
   2
    \
     3
    /
   2
  /
 1
Output:2
Explanation:
Longest consecutive sequence path is 2-3,not 3-2-1, so return 2.
class Solution:
    def longestConsecutive(self, root):
        if not root:
            return 0
        ans = 0
        def helper(root, pre, cur):
            nonlocal ans
            if not root:
                return
            if root.val == pre.val + 1:
                cur += 1
            else:
                cur = 1
            ans = max(ans, cur)
            helper(root.left, root, cur)
            helper(root.right, root, cur)
        helper(root, root, 1)
        return ans

遍历:

class Solution:
    def longestConsecutive(self, root):
        if not root:
            return 0
        ans = 0
        q = [(root, root, 1)]
        while q:
            root, pre, cur = q.pop(0)
            if not root:
                continue
            if root.val == pre.val + 1:
                cur += 1
            else:
                cur = 1
            ans = max(ans, cur)
            q.append((root.left, root, cur))
            q.append((root.right, root, cur))
        return ans

五刷:Facebook tag

897. Increasing Order Search Tree (Easy)

Given a binary search tree, rearrange the tree in in-order so that the leftmost node in the tree is now the root of the tree, and every node has no left child and only 1 right child.

Example 1:
Input: [5,3,6,2,4,null,8,1,null,null,null,7,9]
       5
      / \
    3    6
   / \    \
  2   4    8
 /        / \
1        7   9
Output: [1,null,2,null,3,null,4,null,5,null,6,null,7,null,8,null,9]
 1
  \
   2
    \
     3
      \
       4
        \
         5
          \
           6
            \
             7
              \
               8
                \
                 9

Note:
The number of nodes in the given tree will be between 1 and 100.
Each node will have a unique integer value from 0 to 1000.

class Solution:
    def increasingBST(self, root: TreeNode) -> TreeNode:
        def dfs(root):
            nonlocal p
            if not root:
                return
            dfs(root.left)
            p.right = root
            root.left = None
            p = p.right
            dfs(root.right)
        dummy = p = TreeNode(0)    
        dfs(root)
        return dummy.rightt

7刷:Facebook tag,关键要建立p,因为在任意root,左边都被递归处理过并被p保存,第一步就可以将left切断

617. Merge Two Binary Trees (Easy)

You are given two binary trees root1 and root2.

Imagine that when you put one of them to cover the other, some nodes of the two trees are overlapped while the others are not. You need to merge the two trees into a new binary tree. The merge rule is that if two nodes overlap, then sum node values up as the new value of the merged node. Otherwise, the NOT null node will be used as the node of the new tree.

Return the merged tree.

Note: The merging process must start from the root nodes of both trees.

Example 1:
Example 1 image
Input: root1 = [1,3,2,5], root2 = [2,1,3,null,4,null,7]
Output: [3,4,5,5,4,null,7]
Example 2:
Input: root1 = [1], root2 = [1,2]
Output: [2,2]

Constraints:
The number of nodes in both trees is in the range [0, 2000].
-104 <= Node.val <= 104

解法1:

class Solution:
    def mergeTrees(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> Optional[TreeNode]:
        if not root1:
            return root2
        if not root2:
            return root1
        root1.val += root2.val
        root1.left = self.mergeTrees(root1.left, root2.left)
        root1.right = self.mergeTrees(root1.right, root2.right)
        return root1

解法2:

class Solution:
    def mergeTrees(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> Optional[TreeNode]:
        if not root1 and not root2:
            return None
        if not root1:
            return TreeNode(root2.val, root2.left, root2.right)
        if not root2:
            return TreeNode(root1.val, root1.left, root1.right)
        rootM = TreeNode(root1.val + root2.val)
        rootM.left = self.mergeTrees(root1.left, root2.left)
        rootM.right = self.mergeTrees(root1.right, root2.right)
        return rootM

写法3:

class Solution:
    def mergeTrees(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> Optional[TreeNode]:
        if not root1 and not root2:
            return
        root = TreeNode()
        if root1 and not root2:
            root.val = root1.val
            root.left = self.mergeTrees(root1.left, None)
            root.right = self.mergeTrees(root1.right, None)
            return root
        if not root1 and root2:
            root.val = root2.val
            root.left = self.mergeTrees(None, root2.left)
            root.right = self.mergeTrees(None, root2.right)
            return root
        if root1 and root2:
            root.val = root1.val + root2.val
            root.left = self.mergeTrees(root1.left, root2.left)
            root.right = self.mergeTrees(root1.right, root2.right)
        return root

4刷

124. Binary Tree Maximum Path Sum (Hard)

A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.

The path sum of a path is the sum of the node's values in the path.
Given the root of a binary tree, return the maximum path sum of any non-empty path.

Example 1:
example1
Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.

Example 2:
example2
Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.

Constraints:

The number of nodes in the tree is in the range [1, 3 * 104].
-1000 <= Node.val <= 1000

递归:

class Solution:
    def maxPathSum(self, root: Optional[TreeNode]) -> int:
        def helper(root):
            nonlocal ans
            if not root:
                return 0
            l = max(helper(root.left), 0)
            r = max(helper(root.right), 0)
            ans = max(ans, l + r + root.val)
            return max(l, r) + root.val
        ans = float('-inf')
        helper(root)
        return ans

遍历:

class Solution:
    def maxPathSum(self, root: Optional[TreeNode]) -> int:
        ans = float('-inf')
        stack = [(root, False)]
        d = {None: 0}
        while stack:
            root, visited = stack.pop()
            if root:
                if visited:
                    l = max(d[root.left], 0)
                    r = max(d[root.right], 0)
                    ans = max(ans, l + r + root.val)
                    d[root] = max(l, r) + root.val
                else:
                    stack.append((root, True))
                    stack.append((root.left, False))
                    stack.append((root.right, False))
        return ans

Blind 75

Tree based BFS 基于树的 BFS

102. Binary Tree Level Order Traversal (Medium)

Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, level by level).

For example:
Given binary tree [3,9,20,null,null,15,7],
    3
   / \
  9  20
    /  \
   15   7
return its level order traversal as:
[
  [3],
  [9,20],
  [15,7]
]

递归:

class Solution:
    def levelOrder(self, root: TreeNode) -> List[List[int]]:
        if not root:
            return []
        ans = []
        def helper(root, depth = 0):
            if not root:
                return
            if depth == len(ans):
                ans.append([])
            ans[depth].append(root.val)
            helper(root.left, depth + 1)
            helper(root.right, depth + 1)
        helper(root)
        return ans

遍历 BFS:

class Solution:
    def levelOrder(self, root: TreeNode) -> List[List[int]]:
        if not root:
            return []
        ans = []
        q = [root]
        while q:
            nq, cur = [], []
            for root in q:
                cur.append(root.val)
                if root.left:
                    nq.append((root.left))
                if root.right:
                    nq.append(root.right)
            ans.append(cur)
            q = nq
        return ans

遍历2 DFS:

class Solution:
    def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
        if not root:
            return
        ans = []
        stack = [(root, 0)]
        while stack:
            root, depth = stack.pop()
            if depth == len(ans):
                ans.append([])
            ans[depth].append(root.val)
            if root.right:
                stack.append((root.right, depth + 1))
            if root.left:
                stack.append((root.left, depth + 1))
        return ans

高频, blind 75

107. Binary Tree Level Order Traversal II (Easy)

Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from left to right, level by level from leaf to root).

For example:
Given binary tree [3,9,20,null,null,15,7],
    3
   / \
  9  20
    /  \
   15   7
return its bottom-up level order traversal as:
[
  [15,7],
  [9,20],
  [3]
]
class Solution:
    def levelOrderBottom(self, root: TreeNode) -> List[List[int]]:
        if not root:
            return []
        ans = []
        def helper(root, depth):
            if not root:
                return
            if depth == len(ans) :
                ans.insert(0, [])
            ans[len(ans) - 1 - depth].append(root.val)
            helper(root.left, depth + 1)
            helper(root.right, depth + 1)
        helper(root, 0)
        return ans

遍历:

class Solution:
    def levelOrderBottom(self, root: TreeNode) -> List[List[int]]:
        if not root:
            return []
        q = [root]
        ans = []
        while q:
            nq = []
            cur = []
            for root in q:
                cur.append(root.val)
                if root.left:
                    nq.append(root.left)
                if root.right:
                    nq.append(root.right)
            ans.insert(0, cur)
            q = nq
        return ans

五刷:高频。list.insert(0, x), 也可用deque的appendleft

103. Binary Tree Zigzag Level Order Traversal (Medium)

LinC 71. Binary Tree Zigzag Order Traversal
Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to right, then right to left for the next level and alternate between).

For example:
Given binary tree [3,9,20,null,null,15,7],
    3
   / \
  9  20
    /  \
   15   7
return its zigzag level order traversal as:
[
  [3],
  [20,9],
  [15,7]
]

DFS:

class Solution:
    def zigzagLevelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
        def dfs(root, d):
            if not root:
                return
            if len(ans) - 1 < d:
                ans.append(deque())
            if d % 2:
                ans[d].appendleft(root.val)
            else:
                ans[d].append(root.val)
            dfs(root.left, d + 1)
            dfs(root.right, d + 1)
        ans = []
        dfs(root, 0)
        return ans

BFS:

class Solution:
    def zigzagLevelOrder(self, root):
        if not root:
            return []
        q = [root]
        ans = []
        zig = True
        while q:        
            ans.append([root.val for root in q])
            if not zig:
                ans[-1].reverse()
            zig = not zig
            nq = []
            for root in q:
                if root.left:
                    nq.append(root.left)
                if root.right:
                    nq.append(root.right)
            q = nq
        return ans       

3刷:高频

958. Check Completeness of a Binary Tree (Medium)

Given a binary tree, determine if it is a complete binary tree.
Definition of a complete binary tree from Wikipedia:
In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.

Example 1:
Check Completeness of a Binary Tree example1
Input: [1,2,3,4,5,6]
Output: true
Explanation: Every level before the last is full (ie. levels with node-values {1} and {2, 3}), and all nodes in the last level ({4, 5, 6}) are as far left as possible.

Example 2:
Check Completeness of a Binary Tree example1
Input: [1,2,3,4,5,null,7]
Output: false
Explanation: The node with value 7 isn't as far left as possible.

Note:
The tree will have between 1 and 100 nodes.

class Solution:
    def isCompleteTree(self, root: TreeNode) -> bool:
        q = [root]
        noMore = False
        while q:
            root = q.pop(0)
            if root and noMore:
                return False
            if not root:
                noMore = True
            else:
                q.append(root.left)
                q.append(root.right)
        return True

五刷

Interval

56. Merge Intervals (Medium)

Given a collection of intervals, merge all overlapping intervals.

Example 1:

Input: [[1,3],[2,6],[8,10],[15,18]]
Output: [[1,6],[8,10],[15,18]]
Explanation: Since intervals [1,3] and [2,6] overlaps, merge them into [1,6].
Example 2:

Input: [[1,4],[4,5]]
Output: [[1,5]]
Explanation: Intervals [1,4] and [4,5] are considered overlapping.

高频

class Solution:
    def merge(self, intervals: List[List[int]]) -> List[List[int]]:
        intervals.sort(key = lambda x: x[0])
        ans = []
        cur = intervals[0]
        for interval in intervals[1:]:
            if cur[1] >= interval[0]:
                cur[1] = max(cur[1], interval[1])
            else:
                ans.append(cur[:])
                cur = interval
        ans.append(cur)
        return ans

Blind 75,面经:Cruise

57. Insert Interval (Medium)

Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.

Example 1:
Input: intervals = [[1,3],[6,9]], newInterval = [2,5]
Output: [[1,5],[6,9]]

Example 2:
Input: intervals = [[1,2],[3,5],[6,7],[8,10],[12,16]], newInterval = [4,8]
Output: [[1,2],[3,10],[12,16]]
Explanation: Because the new interval [4,8] overlaps with [3,5],[6,7],[8,10].

写法1:

class Solution:
    def insert(self, intervals: List[List[int]], newInterval: List[int]) -> List[List[int]]:
        l, r = [], []
        for s, e in intervals:
            if e < newInterval[0]:
                l.append([s, e])
            elif s > newInterval[1]:
                r.append([s, e])
            else:
                newInterval[0] = min(newInterval[0], s)
                newInterval[1] = max(newInterval[1], e)
        return l + [newInterval] + r

写法2:

class Solution:
    def insert(self, intervals: List[List[int]], newInterval: List[int]) -> List[List[int]]:
        ans = []
        i = 0
        ns, ne = newInterval
        n = len(intervals)
        while i < n and intervals[i][1] < ns:
            ans.append(intervals[i])
            i += 1
        while i < n and intervals[i][0] <= ne:
            ns = min(ns, intervals[i][0])
            ne = max(ne, intervals[i][1])
            i += 1
        ans.append([ns, ne])
        while i < n:
            ans.append(intervals[i])
            i += 1
        return ans

Blind75; 高频
写法1:用左右两个数组装不相交的区间,处理相交的区间,将左右和新区间拼接
写法2:先把结束小于新开始的加到ans里;然后过开始小于等于新结束的,合并区间,加到ans中;最后把剩下的加到ans
还有写法3是把newInterval直接加进原数组,然后排序,然后做上一题的merge,不过时间复杂度是O(nlogn)不如前两种的O(n)

435. Non-overlapping Intervals (Medium)

Given an array of intervals intervals where intervals[i] = [starti, endi], return the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.

Example 1:
Input: intervals = [[1,2],[2,3],[3,4],[1,3]]
Output: 1
Explanation: [1,3] can be removed and the rest of the intervals are non-overlapping.

Example 2:
Input: intervals = [[1,2],[1,2],[1,2]]
Output: 2
Explanation: You need to remove two [1,2] to make the rest of the intervals non-overlapping.

Example 3:
Input: intervals = [[1,2],[2,3]]
Output: 0
Explanation: You don't need to remove any of the intervals since they're already non-overlapping.

class Solution:
    def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:
        intervals.sort(key = lambda x: x[1])
        ans = 0
        pre = intervals[0]
        for interval in intervals[1:]:
            if pre[1] > interval[0]:
                ans += 1
            else:
                pre = interval
        return ans

Blind 75; Greedy 贪心算法,优先提前结束的事件。如果下一个结束的事件和前一个事件有交集,既删除它

Meeting Rooms 带锁

920 · Meeting Rooms Lintcode
Given an array of meeting time intervals consisting of start and end times [(s1,e1),(s2,e2),...] (si < ei), determine if a person could attend all meetings.

Example1
Input: intervals = [(0,30),(5,10),(15,20)]
Output: false
Explanation:
(0,30), (5,10) and (0,30),(15,20) will conflict

Example2
Input: intervals = [(5,8),(9,15)]
Output: true
Explanation:
Two times will not conflict

from typing import (
    List,
)
from lintcode import (
    Interval,
)

"""
Definition of Interval:
class Interval(object):
    def __init__(self, start, end):
        self.start = start
        self.end = end
"""

class Solution:
    """
    @param intervals: an array of meeting time intervals
    @return: if a person could attend all meetings
    """
    def can_attend_meetings(self, intervals: List[Interval]) -> bool:
        intervals.sort(key = lambda x: x.start)
        for i in range(1, len(intervals)):
            if intervals[i].start < intervals[i - 1].end:
                return False
        return True

Blind 75

Meeting Rooms II 带锁

919 · Meeting Rooms II Lintcode
Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si < ei), find the minimum number of conference rooms required.

Example1
Input: intervals = [(0,30),(5,10),(15,20)]
Output: 2
Explanation:
We need two meeting rooms
room1: (0,30)
room2: (5,10),(15,20)

Example2
Input: intervals = [(2,7)]
Output: 1
Explanation:
Only need one meeting room

class Solution:
    """
    @param intervals: an array of meeting time intervals
    @return: the minimum number of conference rooms required
    """
    def min_meeting_rooms(self, intervals: List[Interval]) -> int:
        # Write your code here
        events = []
        for interval in intervals:
            events.append((interval.start, 1))
            events.append((interval.end, -1))

        events.sort()
        cur_room = 0
        ans = 0
        for _, e_type in events:
            cur_room += e_type
            ans = max(ans, cur_room)
        return ans

Blind 75

Binary Search & LogN Algorithm

二分法模板: start + 1 < end; start + (end - start) / 2; A[mid] ==, <, >; A[start] A[end] ? target

704. Binary Search (Easy)

lintcode's version

Find any position of a target number in a sorted array. Return -1 if target does not exist.

Example
Given [1, 2, 2, 4, 5, 5].

For target = 2, return 1 or 2.

For target = 5, return 4 or 5.

For target = 6, return -1.

Challenge
O(logn) time
class Solution:
    """
    @param: nums: An integer array sorted in ascending order
    @param: target: An integer
    @return: An integer
    """
    def findPosition(self, nums, target):
        # write your code here
        if (len(nums) == 0):
          return -1
        start, end = 0, len(nums) - 1
        while (start + 1 < end):
            mid = start + (end - start) // 2
            if (nums[mid] == target):
                return mid
            elif (nums[mid] < target):
                start = mid
            else:
                end = mid
        if (nums[start] == target):
            return start
        if (nums[end] == target):
            return end
        return -1

总结:背好模板,lintcode 的 test case 包含空输入数组,需要 python3 的 // 整除运算符才能过

二刷:

class Solution:
    def search(self, nums, target):
        """
        :type nums: List[int]
        :type target: int
        :rtype: int
        """
        if len(nums) == 0 or (len(nums) == 1 and nums[0] != target):
            return -1
        return self.helper(nums, target, 0, len(nums) - 1)
    def helper(self, nums, target, start, end):
        if (start > end):
            return -1
        if (start + 1 == end):
            if nums[end] == target:
                return end
            if nums[start] == target:
                return start
            else:
                return -1
        mid = start + (end - start) // 2
        if (nums[mid] == target):
            return mid
        elif (nums[mid] < target):
            start = mid
        else:
            end = mid
        return self.helper(nums, target, start, end)

总结:不背模板也能写。 但是写出来不如模板的优雅。如果递归调用前面不加 return 的话,还会发生不 return 的情况

LinC 14. First Position of Target (Easy)

Description
For a given sorted array (ascending order) and a target number, find the first index of this number in O(log n) time complexity.

If the target number does not exist in the array, return -1.

Have you met this question in a real interview?
Example
If the array is [1, 2, 3, 3, 4, 5, 10], for given target 3, return 2.

Challenge
If the count of numbers is bigger than 2^32, can your code work properly?

思路:找到了不要 return,扔掉大的一半,继续找

class Solution:
    """
    @param nums: The integer array.
    @param target: Target to find.
    @return: The first position of target. Position starts from 0.
    """
    def binarySearch(self, nums, target):
        # write your code here
        if (len(nums) == 0):
            return -1
        start, end = 0, len(nums) - 1
        while (start + 1 < end):
            mid = start + (end - start) // 2
            if (nums[mid] >= target):
                end = mid
            else:
                start = mid
        if (nums[start] == target):
            return start
        if (nums[end] == target):
            return end
        return -1

总结:背好模板,模板 v5

278. First Bad Version (Easy)

You are a product manager and currently leading a team to develop a new product. Unfortunately, the latest version of your product fails the quality check. Since each version is developed based on the previous version, all the versions after a bad version are also bad.

Suppose you have n versions [1, 2, ..., n] and you want to find out the first bad one, which causes all the following ones to be bad.

You are given an API bool isBadVersion(version) which will return whether version is bad. Implement a function to find the first bad version. You should minimize the number of calls to the API.

Example:

Given n = 5, and version = 4 is the first bad version.

call isBadVersion(3) -> false
call isBadVersion(5) -> true
call isBadVersion(4) -> true

Then 4 is the first bad version.
# The isBadVersion API is already defined for you.
# @param version, an integer
# @return an integer
# def isBadVersion(version):

class Solution:
    def firstBadVersion(self, n):
        """
        :type n: int
        :rtype: int
        """
        l, r = 0, n
        while l + 1 < r:
            mid = l + (r - l) // 2
            if not isBadVersion(mid):
                l = mid + 1
            else:
                r = mid
        return l if isBadVersion(l) else r

3刷: 高频

34. Find First and Last Position of Element in Sorted Array (Medium)

Given an array of integers nums sorted in ascending order, find the starting and ending position of a given target value.

Your algorithm's runtime complexity must be in the order of O(log n).

If the target is not found in the array, return [-1, -1].

Example 1:

Input: nums = [5,7,7,8,8,10], target = 8
Output: [3,4]
Example 2:

Input: nums = [5,7,7,8,8,10], target = 6
Output: [-1,-1]
class Solution:
    def searchRange(self, nums: List[int], target: int) -> List[int]:
        if not nums or target < nums[0] or target > nums[-1]:
            return [-1, -1]
        l, r = 0, len(nums) - 1
        while l + 1 < r:
            mid = (l + r) // 2
            if nums[mid] < target:
                l = mid + 1
            else:
                r = mid
        ans = [-1, -1]
        if nums[l] == target:
            ans[0] = l  
        elif nums[r] == target:
            ans[0] = r
        l, r = 0, len(nums) - 1
        while l + 1 < r:
            mid = (l + r) // 2
            if nums[mid] > target:
                r = mid - 1
            else:
                l = mid
        if nums[r] == target:
            ans[1] = r  
        elif nums[l] == target:
            ans[1] = l
        return ans

3刷:高频,二分法找 Target, 两次二分法,一次找左边界,一次找右边界

LinC 61. Search for a Range (Medium)

Given a sorted array of n integers, find the starting and ending position of a given target value.

If the target is not found in the array, return [-1, -1].

Example
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].

Challenge
O(log n) time.

思路:找一个数的第一次和最后一次出现的 index

class Solution:
    """
    @param A: an integer sorted array
    @param target: an integer to be inserted
    @return: a list of length 2, [index1, index2]
    """
    def searchRange(self, A, target):
        # write your code here
        firstO, lastO = -1, -1
        if len(A) == 0:
            return [firstO, lastO]
        start, end = 0, len(A) - 1
        while (start + 1 < end):
            mid = start + (end - start) // 2
            if (A[mid] < target):
                start = mid
            else:
                end = mid
        if (A[end] == target):
            firstO = end
        if (A[start] == target):
            firstO = start
        start, end = 0, len(A) - 1
        while (start + 1 < end):
            mid = start + (end - start) // 2
            if (A[mid] <= target):
                start = mid
            else:
                end = mid
        if (A[start] == target):
            lastO = start
        if (A[end] == target):
            lastO = end
        return [firstO, lastO]

总结:注意检查空输入!

852. Peak Index in a Mountain Array

LinC 585. Maximum Number in Mountain Sequence (Medium)
Given a mountain sequence of n integers which increase firstly and then decrease, find the mountain top.
Example
Given nums = [1, 2, 4, 8, 6, 3] return 8
Given nums = [10, 9, 8, 7], return 10

思路:切一刀,判断递增就扔左边,递减就扔右边, 不然就找到了中点
二刷:

class Solution:
    def peakIndexInMountainArray(self, A):
        """
        :type A: List[int]
        :rtype: int
        """
        start, end = 0, len(A) - 1
        while start + 1 < end:
            mid = start + (end - start) // 2
            if A[mid - 1] < A[mid] < A[mid + 1]:
                start = mid
            elif A[mid - 1] > A[mid] > A[mid + 1]:
                end = mid
            else:
                return mid
        return start if A[start] > A[end] else end

总结:二刷写法跟一刷一样,哪怕是简单的题,题要看清楚, mid min 不要拼错

162. Find Peak Element (Medium)

A peak element is an element that is greater than its neighbors.
Given an input array nums, where nums[i] ≠ nums[i+1], find a peak element and return its index.
The array may contain multiple peaks, in that case return the index to any one of the peaks is fine.
You may imagine that nums[-1] = nums[n] = -∞.

Example 1:
Input: nums = [1,2,3,1]
Output: 2
Explanation: 3 is a peak element and your function should return the index number 2.

Example 2:
Input: nums = [1,2,1,3,5,6,4]
Output: 1 or 5
Explanation: Your function can return either index number 1 where the peak element is 2,
or index number 5 where the peak element is 6.
Note:
Your solution should be in logarithmic complexity.

class Solution:
    def findPeakElement(self, nums: List[int]) -> int:
        def get(i):
            if i == -1 or i == n:
                return float('-inf')
            return nums[i]
        n = len(nums)
        l, r = 0, n - 1
        while l + 1 < r:
            mid = l + (r - l) // 2
            if nums[mid - 1] < nums[mid] > nums[mid + 1]:
                return mid
            elif nums[mid - 1] < nums[mid] < nums[mid + 1]:
                l = mid + 1
            else:
                r = mid - 1
        return r if nums[l] < nums[r] else l

写法2:

class Solution:
    def findPeakElement(self, nums: List[int]) -> int:
        def get(i):
            if i == -1 or i == n:
                return float('-inf')
            return nums[i]
        def bs(l, r):
            mid = (l + r) // 2
            if get(mid - 1) < get(mid) > get(mid + 1):
                return mid
            elif get(mid - 1) < get(mid) < get(mid + 1):
                return bs(mid + 1, r)
            else:
                return bs(l, mid - 1)
        n = len(nums)
        return bs(0, n - 1)

2刷:面经,Quora。关键要知道切中点,如果是///向上,则顶点在右,如果/^\则找到顶点,否则顶点在左

74. Search a 2D Matrix (Medium)

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

Integers in each row are sorted from left to right.
The first integer of each row is greater than the last integer of the previous row.
Example 1:

Input:
matrix = [
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]
target = 3
Output: true
Example 2:

Input:
matrix = [
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]
target = 13
Output: false
class Solution:
    def searchMatrix(self, matrix, target):
        """
        :type matrix: List[List[int]]
        :type target: int
        :rtype: bool
        """
        m, n = len(matrix), len(matrix[0])
        l, r = 0, m - 1
        while l + 1 < r:
            mid = (l + r) // 2
            if matrix[mid][0] == target:
                return True
            elif matrix[mid][0] < target:
                l = mid
            else:
                r = mid - 1
        tr = l if matrix[r][0] > target else r
        l, r = 0, n - 1
        while l + 1 < r:
            mid = (l + r) // 2
            if matrix[tr][mid] == target:
                return True
            elif matrix[tr][mid] < target:
                l = mid + 1
            else:
                r = mid - 1
        return matrix[tr][l] == target or matrix[tr][r] == target

3刷:高频

153. Find Minimum in Rotated Sorted Array (Medium)

Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.

(i.e.,  [0,1,2,4,5,6,7] might become  [4,5,6,7,0,1,2]).

Find the minimum element.

You may assume no duplicate exists in the array.

Example 1:
Input: [3,4,5,1,2]
Output: 1

Example 2:
Input: [4,5,6,7,0,1,2]
Output: 0

遍历

class Solution:
    def findMin(self, nums: List[int]) -> int:
        l, r = 0, len(nums) - 1
        while l + 1 < r:
            mid = (l + r) // 2
            if nums[mid] < nums[r]:
                r = mid
            else:
                l = mid + 1
        return min(nums[l], nums[r])

递归

class Solution:
    def findMin(self, nums: List[int]) -> int:
        def helper(l, r):
            if l == r:
                return nums[l]
            mid = l + (r - l) // 2
            if nums[mid] < nums[r]:
                return helper(l, mid)
            else:
                return helper(mid + 1, r)
        return helper(0, len(nums) - 1)

Blind 75; 答案肯定在转折的区间里, 因此,如果右边是连续的,那答案可能在mid及左半边,否则就一定不在左半边(mid已经不是最小了)

33. Search in Rotated Sorted Array (Medium)

Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.

(i.e., [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2]).

You are given a target value to search. If found in the array return its index, otherwise return -1.

You may assume no duplicate exists in the array.

Your algorithm's runtime complexity must be in the order of O(log n).

Example 1:

Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:

Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
class Solution:
    def search(self, nums: List[int], target: int) -> int:
        n = len(nums)
        l, r = 0, n - 1
        while l + 1 < r:
            mid = (l + r) // 2
            if nums[mid] < nums[r]:
                if nums[mid] <= target <= nums[r]:
                    l = mid
                else:
                    r = mid - 1
            else:
                if nums[l] <= target <= nums[mid]:
                    r = mid
                else:
                    l = mid + 1
        if nums[l] == target:
            return l
        if nums[r] == target:
            return r
        return -1

高频

81. Search in Rotated Sorted Array II (Medium)

Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.

(i.e., [0,0,1,2,2,5,6] might become [2,5,6,0,0,1,2]).

You are given a target value to search. If found in the array return true, otherwise return false.

Example 1:

Input: nums = [2,5,6,0,0,1,2], target = 0
Output: true
Example 2:

Input: nums = [2,5,6,0,0,1,2], target = 3
Output: false
Follow up:

This is a follow up problem to Search in Rotated Sorted Array, where nums may contain duplicates.
Would this affect the run-time complexity? How and why?
class Solution:
    def search(self, nums: List[int], target: int) -> bool:
        n = len(nums)
        l, r = 0, n - 1
        while l + 1 < r:
            mid = (l + r) // 2
            if nums[l] == nums[mid]:
                l += 1
            elif nums[mid] == nums[r]:
                r -= 1
            elif nums[mid] < nums[r]:
                if nums[mid] <= target <= nums[r]:
                    l = mid
                else:
                    r = mid - 1
            else:
                if nums[l] <= target <= nums[mid]:
                    r = mid
                else:
                    l = mid + 1
        return target == nums[l] or target == nums[r]

高频

69. Sqrt(x) (Easy)

Implement int sqrt(int x).

Compute and return the square root of x, where x is guaranteed to be a non-negative integer.

Since the return type is an integer, the decimal digits are truncated and only the integer part of the result is returned.

Example 1:

Input: 4
Output: 2
Example 2:

Input: 8
Output: 2
Explanation: The square root of 8 is 2.82842..., and since
             the decimal part is truncated, 2 is returned.
class Solution:
    def mySqrt(self, x: int) -> int:
        l, r = 0, x
        while l + 1 < r:
            mid = l + (r - l) // 2
            if mid * mid <= x < (mid + 1) * (mid + 1):
                return mid
            elif mid * mid < x:
                l = mid + 1
            else:
                r = mid - 1
        return l if l * l <= x < (l + 1) * (l + 1) else r

高频:统一模板...l + 1 < r...if mid * mid <= x <(mid + 1) * (mid + 1)...return l if l * l <= x <...

35. Search Insert Position (Easy)

Given a sorted array and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.

You may assume no duplicates in the array.

Example 1:

Input: [1,3,5,6], 5
Output: 2
Example 2:

Input: [1,3,5,6], 2
Output: 1
Example 3:

Input: [1,3,5,6], 7
Output: 4
Example 4:

Input: [1,3,5,6], 0
Output: 0
class Solution:
    def searchInsert(self, nums: List[int], target: int) -> int:
        l, r = 0, len(nums) - 1
        while l + 1 < r:
            mid = l + (r - l) // 2
            if nums[mid] == target:
                return mid
            elif nums[mid] < target:
                l = mid
            else:
                r = mid
        if target <= nums[l]:
            return l
        if target <= nums[r]:
            return r
        return len(nums)

高频:...l = mid...if target <= nums[l]: return l...return len(nums)

658. Find K Closest Elements (Medium)

LinC 460. Find K Closest Elements (Medium)

Given a sorted array, two integers k and x, find the k closest elements to x in the array. The result should also be sorted in ascending order. If there is a tie, the smaller elements are always preferred.

Example 1:
Input: [1,2,3,4,5], k=4, x=3
Output: [1,2,3,4]
Example 2:
Input: [1,2,3,4,5], k=4, x=-1
Output: [1,2,3,4]
Note:
The value k is positive and will always be smaller than the length of the sorted array.
Length of the given array is positive and will not exceed 104
Absolute value of elements in the array and x will not exceed 104
UPDATE (2017/9/19):
The arr parameter had been changed to an array of integers (instead of a list of integers). Please reload the code definition to get the latest changes.
class Solution:
    def findClosestElements(self, arr: List[int], k: int, x: int) -> List[int]:
        n = len(arr)
        l, r = 0, n - 1
        while l + 1 < r:
            mid = (l + r) // 2
            if arr[mid] < x:
                l = mid
            else:
                r = mid
        ans = deque()
        while l >= 0 and r < n and len(ans) < k:
            if abs(arr[l] - x) <= abs(arr[r] - x):
                ans.appendleft(arr[l])
                l -= 1
            else:
                ans.append(arr[r])
                r += 1
        while l >= 0 and len(ans) < k:
            ans.appendleft(arr[l])
            l -= 1
        while r < n and len(ans) < k:
            ans.append(arr[r])
            r += 1
        return ans

4刷:二分查找 target,将 l, r 指针放到离x最近的位置...if arr[mid] < x: l = mid else: r = mid...;然后开始往结果里填充k个数
网上还有一种很妖的二分查找一步到位解法,破坏了模板,核心原理是l, r = 0, len(arr) - k...if x - arr[mid] > arr[mid + k] - x: l = mid + 1 else: r = mid; return arr[l: l + k]

528. Random Pick with Weight (Medium)

You are given an array of positive integers w where w[i] describes the weight of ith index (0-indexed).

We need to call the function pickIndex() which randomly returns an integer in the range [0, w.length - 1]. pickIndex() should return the integer proportional to its weight in the w array. For example, for w = [1, 3], the probability of picking the index 0 is 1 / (1 + 3) = 0.25 (i.e 25%) while the probability of picking the index 1 is 3 / (1 + 3) = 0.75 (i.e 75%).

More formally, the probability of picking index i is w[i] / sum(w).

Example 1:
Input
["Solution","pickIndex"]
[[[1]],[]]
Output
[null,0]

Explanation
Solution solution = new Solution([1]);
solution.pickIndex(); // return 0. Since there is only one single element on the array the only option is to return the first element.
Example 2:

Input
["Solution","pickIndex","pickIndex","pickIndex","pickIndex","pickIndex"]
[[[1,3]],[],[],[],[],[]]
Output
[null,1,1,1,1,0]

Explanation
Solution solution = new Solution([1, 3]);
solution.pickIndex(); // return 1. It's returning the second element (index = 1) that has probability of 3/4.
solution.pickIndex(); // return 1
solution.pickIndex(); // return 1
solution.pickIndex(); // return 1
solution.pickIndex(); // return 0. It's returning the first element (index = 0) that has probability of 1/4.

Since this is a randomization problem, multiple answers are allowed so the following outputs can be considered correct :
[null,1,1,1,1,0]
[null,1,1,1,1,1]
[null,1,1,1,0,0]
[null,1,1,1,0,1]
[null,1,0,1,0,0]
......
and so on.
 
Constraints:
1 <= w.length <= 10000
1 <= w[i] <= 10^5
pickIndex will be called at most 10000 times.
class Solution:

    def __init__(self, w: List[int]):
        for i in range(1, len(w)):
            w[i] += w[i - 1]
        self.w = w

    def pickIndex(self) -> int:
        target = random.randint(1, self.w[-1])
        l, r = 0, len(self.w) - 1
        while l + 1 < r:
            mid = (l + r) // 2
            if self.w[mid] < target:
                l = mid + 1
            elif self.w[mid] > target:
                r = mid
            else:
                return mid
        return l if self.w[l] >= target else r

2刷:高频

981. Time Based Key-Value Store (Medium)

Design a time-based key-value data structure that can store multiple values for the same key at different time stamps and retrieve the key's value at a certain timestamp.

Implement the TimeMap class:

TimeMap() Initializes the object of the data structure.
void set(String key, String value, int timestamp) Stores the key key with the value value at the given time timestamp.
String get(String key, int timestamp) Returns a value such that set was called previously, with timestamp_prev <= timestamp. If there are multiple such values, it returns the value associated with the largest timestamp_prev. If there are no values, it returns "".
 

Example 1:

Input
["TimeMap", "set", "get", "get", "set", "get", "get"]
[[], ["foo", "bar", 1], ["foo", 1], ["foo", 3], ["foo", "bar2", 4], ["foo", 4], ["foo", 5]]
Output
[null, null, "bar", "bar", null, "bar2", "bar2"]

Explanation
TimeMap timeMap = new TimeMap();
timeMap.set("foo", "bar", 1);  // store the key "foo" and value "bar" along with timestamp = 1.
timeMap.get("foo", 1);         // return "bar"
timeMap.get("foo", 3);         // return "bar", since there is no value corresponding to foo at timestamp 3 and timestamp 2, then the only value is at timestamp 1 is "bar".
timeMap.set("foo", "bar2", 4); // store the key "foo" and value "ba2r" along with timestamp = 4.
timeMap.get("foo", 4);         // return "bar2"
timeMap.get("foo", 5);         // return "bar2"
 

Constraints:

1 <= key.length, value.length <= 100
key and value consist of lowercase English letters and digits.
1 <= timestamp <= 107
All the timestamps timestamp of set are strictly increasing.
At most 2 * 105 calls will be made to set and get.
class TimeMap:

    def __init__(self):
        self.d = collections.defaultdict(list)

    def set(self, key: str, value: str, timestamp: int) -> None:
        self.d[key].append((value, timestamp))

    def get(self, key: str, timestamp: int) -> str:
        if key not in self.d or self.d[key][0][1] > timestamp:
            return ""
        arr = self.d[key]
        l, r = 0, len(arr) - 1
        while l + 1 < r:
            mid = (l + r) // 2
            if arr[mid][1] > timestamp:
                r = mid - 1
            else:
                l = mid
        if arr[r][1] <= timestamp:
            return arr[r][0]
        return arr[l][0]

use bisect:

class TimeMap:

    def __init__(self):
        self.d = collections.defaultdict(list)
        self.dt = collections.defaultdict(list)

    def set(self, key: str, value: str, timestamp: int) -> None:
        self.d[key].append(value)
        self.dt[key].append(timestamp)

    def get(self, key: str, timestamp: int) -> str:
        if key not in self.d:
            return ""
        i = bisect.bisect(self.dt[key], timestamp)
        return self.d[key][i - 1] if i else ""

4刷:高频

Two pointers

LinC 373. Partition Array by Odd and Even (Easy)

Partition an integers array into odd number first and even number second.

Example
Given [1, 2, 3, 4], return [1, 3, 2, 4]

思路:双指针一头一尾,碰到不符合的就换。

class Solution:
    """
    @param: nums: an array of integers
    @return: nothing
    """
    def partitionArray(self, nums):
        # write your code here
        if len(nums) < 2:
            return
        l, r = 0, len(nums) - 1
        while l < r:
            while l < r and nums[l] % 2 != 0:
                l += 1
            while l < r and nums[r] % 2 == 0:
                r -= 1
            if nums[l] % 2 == 0 or nums[r] % 2 != 0:
                nums[l], nums[r] = nums[r], nums[l]
        if nums[l] % 2 == 0 or nums[r] % 2 != 0:
            nums[l], nums[r] = nums[r], nums[l]

总结:送两个测试数据进去就能写对。 最后两个 if 可以简化。

26. Remove Duplicates from Sorted Array (Easy)

Given a sorted array nums, remove the duplicates in-place such that each element appear only once and return the new length.

Do not allocate extra space for another array, you must do this by modifying the input array in-place with O(1) extra memory.

Example 1:

Given nums = [1,1,2],

Your function should return length = 2, with the first two elements of nums being 1 and 2 respectively.

It doesn't matter what you leave beyond the returned length.
Example 2:

Given nums = [0,0,1,1,1,2,2,3,3,4],

Your function should return length = 5, with the first five elements of nums being modified to 0, 1, 2, 3, and 4 respectively.

It doesn't matter what values are set beyond the returned length.
Clarification:

Confused why the returned value is an integer but your answer is an array?

Note that the input array is passed in by reference, which means modification to the input array will be known to the caller as well.

Internally you can think of this:

// nums is passed in by reference. (i.e., without making a copy)
int len = removeDuplicates(nums);

// any modification to nums in your function would be known by the caller.
// using the length returned by your function, it prints the first len elements.
for (int i = 0; i < len; i++) {
    print(nums[i]);
}

思路:简单题, 慢指针只有在快指针碰到不同的值才走。

class Solution:
    def removeDuplicates(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if len(nums) == 0:
            return 0
        slow, fast = 0, 1
        while fast < len(nums):
            if nums[fast] == nums[slow]:
                fast += 1
            else:
                slow += 1
                nums[slow] = nums[fast]
                fast += 1
        return slow + 1

总结:纯热身,秒解

二刷

class Solution:
    def removeDuplicates(self, nums: List[int]) -> int:
        if len(nums) <= 1:
            return len(nums)
        slow, fast = 0, 1
        while fast < len(nums):
            if nums[slow] == nums[fast]:
                fast += 1
            else:
                slow += 1
                nums[slow], nums[fast] = nums[fast], nums[slow]
                fast += 1
        return slow + 1

总结:虽然是容易热身题,却要思考两个问题,第一,数组需要 in place sort, 需要利用已经排好序这个条件来在 slow 往前一个以后交换 slow 和 fast 的数; 第二,返回 slow + 1 可以省一个 ans 变量
高频: ...else: slow += 1; nums[slow], nums[fast] = nums[fast], nums[slow]; fast += 1...

80. Remove Duplicates from Sorted Array II (Medium)

Given a sorted array nums, remove the duplicates in-place such that duplicates appeared at most twice and return the new length.

Do not allocate extra space for another array, you must do this by modifying the input array in-place with O(1) extra memory.

Example 1:

Given nums = [1,1,1,2,2,3],

Your function should return length = 5, with the first five elements of nums being 1, 1, 2, 2 and 3 respectively.

It doesn't matter what you leave beyond the returned length.
Example 2:

Given nums = [0,0,1,1,1,1,2,3,3],

Your function should return length = 7, with the first seven elements of nums being modified to 0, 0, 1, 1, 2, 3 and 3 respectively.

It doesn't matter what values are set beyond the returned length.
class Solution:
    def removeDuplicates(self, nums: List[int]) -> int:
        if not nums:
            return 0
        w = 0
        for i, n in enumerate(nums):
            if i < 2 or n != nums[w - 2]:
                nums[w] = n
                w += 1
        return w

高频:反正两周前的代码也看不懂了,抄个简单一点的...if i < 2 or n != nums[w - 2]

28. Implement strStr() (Easy)

Implement strStr().

Return the index of the first occurrence of needle in haystack, or -1 if needle is not part of haystack.

Example 1:

Input: haystack = "hello", needle = "ll"
Output: 2
Example 2:

Input: haystack = "aaaaa", needle = "bba"
Output: -1
Clarification:

What should we return when needle is an empty string? This is a great question to ask during an interview.

For the purpose of this problem, we will return 0 when needle is an empty string. This is consistent to C's strstr() and Java's indexOf().

思路:快慢指针

class Solution(object):
    def strStr(self, haystack, needle):
        """
        :type haystack: str
        :type needle: str
        :rtype: int
        """
        if len(needle) == 0:
            return 0
        if len(haystack) == 0:
            return -1
        for i in range(len(haystack)):
            if haystack[i] == needle[0]:
                if i + len(needle) - 1 < len(haystack):
                    if needle == haystack[i: i + len(needle)]:
                        return i
                else:
                    return -1
        return -1

总结: 思路是双指针没问题,实际用 python 的时候可以用 python 的性质直接取子串

二刷:

class Solution:
    def strStr(self, haystack: str, needle: str) -> int:
        if len(needle) == 0:
            return 0
        if len(haystack) == 0:
            return -1
        end = len(haystack) - len(needle) + 1
        if end < 0:
            return -1
        for i in range(0, end):
            if haystack[i:i + len(needle)] == needle:
                return i
        return -1

总结:注意空串的时候要返回 int 而不是 bool, needle 为空时,直接返回 0, 优化 end = len(haystack) - len(needle) + 1; if end < 0: return -1; for i in range(0, end)
高频:考点 end = lh - ln + 1; ... if haystack[i:i + ln] == needle: return i。代码能优化一点点,但是大同小异。

283. Move Zeroes (Easy)

Given an array nums, write a function to move all 0's to the end of it while maintaining the relative order of the non-zero elements.

Example:
Input: [0,1,0,3,12]
Output: [1,3,12,0,0]

Note:
You must do this in-place without making a copy of the array.
Minimize the total number of operations.

class Solution:
    def moveZeroes(self, nums: List[int]) -> None:
        l, r = 0, 0
        n = len(nums)
        while r < n:
            while nums[r] < n and nums[r] == 0:
                r += 1
            nums[l], nums[r] = nums[r], nums[l]
            l += 1
            r += 1

6刷:高频:l,r从0,0开始,l,r永远前进,省去很多判断的麻烦

125. Valid Palindrome (Easy)

Given a string, determine if it is a palindrome, considering only alphanumeric characters and ignoring cases.

Note: For the purpose of this problem, we define empty string as valid palindrome.

Example 1:

Input: "A man, a plan, a canal: Panama"
Output: true
Example 2:

Input: "race a car"
Output: false

思路:头尾双指针, 碰头了返回 True,相同继续走,不同返回 False

class Solution:
    def isPalindrome(self, s: str) -> bool:
        l, r = 0, len(s) - 1
        while l < r:
            while l < r and not s[l].isalnum():
                l += 1
            while l < r and not s[r].isalnum():
                r -= 1
            if s[l].lower() != s[r].lower():
                return False
            l += 1
            r -= 1
        return True

Blind 75; 高频

680. Valid Palindrome II (Easy)

Given a non-empty string s, you may delete at most one character. Judge whether you can make it a palindrome.

Example 1:
Input: "aba"
Output: True
Example 2:
Input: "abca"
Output: True
Explanation: You could delete the character 'c'.
Note:
The string will only contain lowercase characters a-z. The maximum length of the string is 50000.

暴力 TLE:

class Solution:
    def validPalindrome(self, s: str) -> bool:
        for i in range(len(s)):
            t = s[:i] + s[i + 1:]
            if t == t[::-1]:
                return True
        return False

双指针:

class Solution:
    def validPalindrome(self, s: str) -> bool:
        l, r = 0, len(s) - 1
        while l < r:
            if s[l] != s[r]:
                break
            l += 1
            r -= 1
        if l == r:
            return True
        s1 = s[:l] + s[l + 1:]
        s2 = s[:r] + s[r + 1:]
        return s1 == s1[::-1] or s2 == s2[::-1]

3刷,高频

1. Two Sum (Easy)

Given an array of integers, return indices of the two numbers such that they add up to a specific target.
You may assume that each input would have exactly one solution, and you may not use the same element twice.

Example:
Given nums = [2, 7, 11, 15], target = 9,
Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].

class Solution:
    def twoSum(self, nums, target):
        for i in range(len(nums)):
            for j in range(i + 1, len(nums)):
                if nums[i] + nums[j] == target:
                    return [i, j]
class Solution(object):
    def twoSum(self, nums, target):
        remain = {}
        for i, n in enumerate(nums):
            if n in remain:
                return [remain[n], i]
            remain[target - n] = i

一刷,高频,面经:维萨。简化代码, 双指针, hashmap

167. Two Sum II - Input array is sorted (Easy)

Given an array of integers that is already sorted in ascending order, find two numbers such that they add up to a specific target number.

The function twoSum should return indices of the two numbers such that they add up to the target, where index1 must be less than index2.

Note:

Your returned answers (both index1 and index2) are not zero-based.
You may assume that each input would have exactly one solution and you may not use the same element twice.
Example:

Input: numbers = [2,7,11,15], target = 9
Output: [1,2]
Explanation: The sum of 2 and 7 is 9. Therefore index1 = 1, index2 = 2.

思路:增加了 sorted 这个条件, 第一感觉是可以折半查找了。固定 index1,index2 用折半查找获得

class Solution:
    def twoSum(self, numbers, target):
        """
        :type numbers: List[int]
        :type target: int
        :rtype: List[int]
        """
        for index1 in range(len(numbers)):
            start, end = index1 + 1, len(numbers) - 1
            while start + 1 < end:
                mid = start + (end - start) // 2
                if numbers[index1] + numbers[mid] == target:
                    return [index1 + 1, mid + 1]
                elif numbers[index1] + numbers[mid] < target:
                    start = mid + 1
                else:
                    end = mid - 1
            if numbers[index1] + numbers[start] == target:
                return [index1 + 1, start + 1]
            elif numbers[index1] + numbers[end] == target:
                return [index1 + 1, end + 1]

总结:要细心。1.题中 answers are not zero-based 2.要测两个情况 [2, 7, 19], 9 和 [5, 25, 75] 可以测出代码的问题

二刷:

class Solution:
    def twoSum(self, numbers: List[int], target: int) -> List[int]:
        l, r = 0, len(numbers) - 1
        while l < r:
            tsum = numbers[l] + numbers[r]
            if tsum == target:
                return [l + 1, r + 1]
            if tsum < target:
                l += 1
            else:
                r -= 1

总结:二分法跑分不如直接双指针,可能是测试数据导致。双指针代码也简单很多

LinC 607. Two Sum III - Data structure design (Easy)

Design and implement a TwoSum class. It should support the following operations: add and find.

add - Add the number to an internal data structure.
find - Find if there exists any pair of numbers which sum is equal to the value.

Example
add(1); add(3); add(5);
find(4) // return true
find(7) // return false

思路:add 的时候把 sum 都存 dict 里面, 查的时候直接返回 dict 里面有没有 sum. 会超时。

class TwoSum:
    keys = {}
    """
    @param: number: An integer
    @return: nothing
    """
    def add(self, number):
        # write your code here
        if number not in self.keys:
            self.keys[number] = 1
        else:
            self.keys[number] = 2
    """
    @param: value: An integer
    @return: Find if there exists any pair of numbers which sum is equal to the value.
    """
    def find(self, value):
        # write your code here
        for key in self.keys:
            if value - key in self.keys:
                if value - key == key:
                    if self.keys[key] == 2:
                        return True
                else:
                    return True
        return False

总结:虽然是一道容易题, 第一反应的思路会超时。 需要在 find 的时候判断能凑出答案的另一个 key 是不是已经在 keys 里了。而不是先存好 sum。 还要判断两个数相同的时候有没有存过两个数。

15. 3Sum (Medium)

Given an array nums of n integers, are there elements a, b, c in nums such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
The solution set must not contain duplicate triplets.

Example:
Given array nums = [-1, 0, 1, 2, -1, -4],
A solution set is:
[
  [-1, 0, 1],
  [-1, -1, 2]
]

O(n^2):

class Solution:
    def threeSum(self, nums: List[int]) -> List[List[int]]:
        ans = []
        n = len(nums)
        nums.sort()
        for i in range(n - 2):
            if i and nums[i - 1] == nums[i]:
                continue
            l, r = i + 1, n - 1
            while l < r:
                total = nums[i] + nums[l] + nums[r]
                if total == 0:
                    ans.append([nums[i], nums[l], nums[r]])
                    l += 1
                    r -= 1
                    while l < r and nums[l] == nums[l - 1]:
                        l += 1
                    while l < r and nums[r] == nums[r + 1]:
                        r -= 1
                elif total > 0:
                    r -= 1
                else:
                    l += 1
        return ans

Blind 75; 面经:维萨

LinC 382. Triangle Count (Medium)

Given an array of integers, how many three numbers can be found in the array, so that we can build an triangle whose three edges length is the three numbers that we find?

Example
Given array S = [3,4,6,7], return 3. They are:

[3,4,6]
[3,6,7]
[4,6,7]
Given array S = [4,4,4,4], return 4. They are:

[4(1),4(2),4(3)]
[4(1),4(2),4(4)]
[4(1),4(3),4(4)]
[4(2),4(3),4(4)]

思路: 判断能不能做三角形以后全排列

class Solution:
    """
    @param S: A list of integers
    @return: An integer
    """
    def triangleCount(self, S):
        # write your code here
        S.sort(reverse=True)
        sum = 0
        for index1, longest in enumerate(S):
            head, tail = index1 + 1, index1 + 2
            while tail < len(S) and S[head] + S[tail] > longest:
                tail += 1
            tail -= 1
            while head < tail:
                sum += tail - head
                head += 1
                while head < tail and S[head] + S[tail] <= longest:
                    tail -= 1
        return sum

总结:看清题目,问的是有多少个这样的三角形, 返回数就行。 全排列效率比较低。 更优解是每次定下最长边, 寻找符合条件的另外两个边的数量。 双指针的解法是将 tail 推到最小不能组成三角形的位置, 退一步, 然后从 tail 到 head 的位置的都可以组, 因为他们相加只会比最长边更长。 然后将 head 进一步(缩短),tail 边加长到大于最长边的位置,新 tail 到 head 的位置又都可以组。

16. 3Sum Closest (Medium)

Given an array nums of n integers and an integer target, find three integers in nums such that the sum is closest to target. Return the sum of the three integers. You may assume that each input would have exactly one solution.

Example:

Given array nums = [-1, 2, 1, -4], and target = 1.

The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).
class Solution:
    def threeSumClosest(self, nums: List[int], target: int) -> int:
        ans = None
        nums.sort()
        for i in range(len(nums) - 2):
            l, r = i + 1, len(nums) - 1
            while l < r:
                t = nums[i] + nums[l] + nums[r]
                if t == target:
                    return t
                elif t < target:
                    l += 1
                else:
                    r -= 1
                if ans == None or abs(t - target) < abs(ans - target):
                    ans = t
        return ans

高频:将1,2刷的代码思路总结都删了,都差不多。注意这里没有mid,不是二分查找。

LinC 31. Partition Array (Medium)

Description
Given an array nums of integers and an int k, partition the array (i.e move the elements in "nums") such that:
All elements < k are moved to the left
All elements >= k are moved to the right
Return the partitioning index, i.e the first index i nums[i] >= k.
You should do really partition in array nums instead of just counting the numbers of integers smaller than k.
If all elements in nums are smaller than k, then return nums.length

Example
If nums = [3,2,2,1] and k=2, a valid answer is 1.

Challenge
Can you partition the array in-place and in O(n)?

class Solution:
    def partitionArray(self, nums, k):
        if len(nums) == 0:
            return 0
        l, r = 0, len(nums) - 1
        while l <= r:
            while l < len(nums) and nums[l] < k:
                l += 1
            while r >= 0 and nums[r] >= k:
                r -= 1
            if l > r:
                break
            nums[l], nums[r] = nums[r], nums[l]
        return l

总结:注意:1。while 的条件是 l <= r 2.l > r 的时候需要 break

215. Kth Largest Element in an Array (Medium)

Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.
Example 1:
Input: [3,2,1,5,6,4] and k = 2
Output: 5

Example 2:
Input: [3,2,3,1,2,4,5,5,6] and k = 4
Output: 4
Note:
You may assume k is always valid, 1 ≤ k ≤ array's length.

class Solution:
    def findKthLargest(self, nums: List[int], k: int) -> int:
        def qs(l, r):
            p = findP(l, r)
            if p == k - 1:
                return nums[p]
            elif p < k - 1:
                return qs(p + 1, r)
            else:
                return qs(l, p - 1)
        def findP(l, r):
            rP = random.randint(l, r)
            nums[rP], nums[r] = nums[r], nums[rP]
            i = l
            for j in range(l, r):
                if nums[j] > nums[r]:
                    nums[i], nums[j] = nums[j], nums[i]
                    i += 1
            nums[i], nums[r] = nums[r], nums[i]
            return i
        return qs(0, len(nums) - 1)

4刷,由于完全抛弃另一侧,时间复杂度平均由 quick sort 的 O(nlogn) 降为 O(n) 因为输入变小了, quicksort 的输入一直是 n, 最差情况 O(n^2)
面经:维萨

75. Sort Colors (Medium)

Given an array with n objects colored red, white or blue, sort them in-place so that objects of the same color are adjacent, with the colors in the order red, white and blue.
Here, we will use the integers 0, 1, and 2 to represent the color red, white, and blue respectively.

Note: You are not suppose to use the library's sort function for this problem.

Example:
Input: [2,0,2,1,1,0]
Output: [0,0,1,1,2,2]
Follow up:

A rather straight forward solution is a two-pass algorithm using counting sort.
First, iterate the array counting number of 0's, 1's, and 2's, then overwrite array with total number of 0's, then 1's and followed by 2's.
Could you come up with a one-pass algorithm using only constant space?

二刷:

class Solution:
    def sortColors(self, nums: List[int]) -> None:
        """
        Do not return anything, modify nums in-place instead.
        """
        if len(nums) <= 1:
            return
        l, r, i = 0, len(nums) - 1, 0
        while i <= r:
            if nums[i] == 0 and i > l:
                nums[l], nums[i] = nums[i], nums[l]
                l += 1
            elif nums[i] == 2 and i < r:
                nums[i], nums[r] = nums[r], nums[i]
                r -= 1
            else:
                i += 1

总结:in place 不数元素的话得用 l, r 和 i, 要过的话需要熟记交换的第二条件分别为 i > l 和 i < r, 其他情况 i 均前进
高频:去掉了一刷繁琐的方法。counting sort只需要count 0和1。1 pass:...while i <= r:...and i > l:...and i < r:...
面经:Celo。3个数要保持两个边界l和r,和一个worker i,交换条件要加...i > l...和...i < r,否则会过度交换导致结果有bug

18. 4Sum (Medium)

Given an array nums of n integers and an integer target, are there elements a, b, c, and d in nums such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.

Note:

The solution set must not contain duplicate quadruplets.

Example:

Given array nums = [1, 0, -1, 0, -2, 2], and target = 0.

A solution set is:
[
  [-1,  0, 0, 1],
  [-2, -1, 1, 2],
  [-2,  0, 0, 2]
]

思路:看了下三年前的答案,不是特别直观。看了九章的答案,貌似好理解一点:去重,枚举一个数,然后用 3Sum 的做法,O(N^3)

class Solution:
    def fourSum(self, nums, target):
        """
        :type nums: List[int]
        :type target: int
        :rtype: List[List[int]]
        """
        nums.sort()
        ans = []
        for i in range(0, len(nums) - 3):
            if i and nums[i] == nums[i - 1]:
                continue
            for j in range(i + 1, len(nums) - 2):
                if j != i + 1 and nums[j] == nums[j - 1]:
                    continue
                l, r = j + 1, len(nums) - 1
                while l < r:
                    sum = nums[i] + nums[j] + nums[l] + nums[r]
                    if sum == target:
                        ans.append([nums[i], nums[j], nums[l], nums[r]])
                        l += 1
                        r -= 1
                        while l < r and nums[l] == nums[l - 1]:
                            l += 1
                        while l < r and nums[r] == nums[r + 1]:
                            r -= 1
                    elif sum < target:
                        l += 1
                    else:
                        r -= 1
        return ans

总结:有一个自己肯定想不出的条件就是第二层循环怎么跳过:if j != i + 1 and nums[j] == nums[j - 1]: continue; 非常勉强能过 AC. 看了网上和三年前的,都是用 dict 先存 2sum,然后再 loop 两遍,用 if pair[0] > j 来去重(第三个元素的 index 要大于前面两个)。

class Solution:
    def fourSum(self, nums: List[int], target: int) -> List[List[int]]:
        ans = []
        def nsum(l, r, N, target, path):
            if r - l + 1 < N or N < 2 or N > len(nums) or N * nums[l] > target or N * nums[r] < target:
                return
            if N == 2:
                while l < r:
                    t = nums[l] + nums[r]
                    if t == target:
                        ans.append(path + [nums[l], nums[r]])
                        while l < r and nums[l] == nums[l + 1]:
                            l += 1
                        while l < r and nums[r] == nums[r - 1]:
                            r -= 1
                        l += 1
                        r -= 1
                    elif t < target:
                        l += 1
                    else:
                        r -= 1
            else:
                for i in range(l, r + 1):
                    if i == l or (i > l and nums[i] != nums[i - 1]):
                        nsum(i + 1, r, N - 1, target - nums[i], path + [nums[i]])
        nums.sort()
        nsum(0, len(nums) - 1, 4, target, [])
        return ans

二刷:看 leetcode ac 的流行答案, 返回递归 nsum, 递归内终结条件为解决 2sum,,注意两处去重,1.找到 target 以后,在 l < r 条件下跳过所有后面与 l 相同的;2.进入 nsum 前,if i == 0 or (i > 0 and nums[i - 1] != nums[i])
总结:很多坑,N == 2 时要注意 while l < r 做二分法;N > 2 时 for i in range(l, r + 1); nsum(i + 1, ...); 如是高频题需要练熟
高频:...def nsum(l, r, N, target, path): if r - l + 1 < N or N < 2 or...if N == 2: while l < r:... while l < r and nums[l] == nums[l + 1]:...while...l += 1; r -= 1... for i in range(l, r + 1): if (i == l) or...: nsum(i + 1, r...)...

27. Remove Element

Given an array nums and a value val, remove all instances of that value in-place and return the new length.

Do not allocate extra space for another array, you must do this by modifying the input array in-place with O(1) extra memory.

The order of elements can be changed. It doesn't matter what you leave beyond the new length.

Example 1:

Given nums = [3,2,2,3], val = 3,

Your function should return length = 2, with the first two elements of nums being 2.

It doesn't matter what you leave beyond the returned length.
Example 2:

Given nums = [0,1,2,2,3,0,4,2], val = 2,

Your function should return length = 5, with the first five elements of nums containing 0, 1, 3, 0, and 4.

Note that the order of those five elements can be arbitrary.

It doesn't matter what values are set beyond the returned length.

高频

class Solution:
    def removeElement(self, nums: List[int], val: int) -> int:
        ans = len(nums)
        i = 0
        j = ans - 1
        while i <= j:
            while i <= j and nums[i] != val:
                i += 1
            while i <= j and nums[j] == val:
                j -= 1
                ans -= 1
            if i < j:
                nums[i], nums[j] = nums[j], nums[i]
        return ans

总结:背while i <= j: while i <= j and ... while i <= j and ...if i < j: ...

11. Container With Most Water (Medium)

Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

Note: You may not slant the container and n is at least 2.
Container With Most Water example
The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.

Example:
Input: [1,8,6,2,5,4,8,3,7]
Output: 49

class Solution:
    def maxArea(self, height: List[int]) -> int:
        l, r = 0, len(height) - 1
        ans = 0
        while l < r:
            hl, hr = height[l], height[r]
            ans = max(ans, (r - l) * min(hl, hr))
            if hl < hr:
                l += 1
            else:
                r -= 1
        return ans

Blind 75; 高频:双指针往中心走,面积是:(r − l) × min(height[l], height[r]), 优先收缩矮的(对总面积贡献小的)一边

345. Reverse Vowels of a String (Easy)

Write a function that takes a string as input and reverse only the vowels of a string.

Example 1:
Input: "hello"
Output: "holle"

Example 2:
Input: "leetcode"
Output: "leotcede"
Note:

class Solution:
    def reverseVowels(self, s: str) -> str:
        stack = []
        for c in s:
            if c in "aeiouAEIOU":
                stack.append(c)
        for i, c in enumerate(s):
            if c in "aeiouAEIOU":
                s = s[:i] + stack.pop() + s[i + 1:]
        return s

inplace:

class Solution:
    def reverseVowels(self, s: str) -> str:
        l, r = 0, len(s) - 1
        arr = list(s)
        while l < r:
            while arr[l] not in "aeiouAEIOU" and l < len(s) - 1:
                l += 1
            while arr[r] not in "aeiouAEIOU" and r > 0:
                r -= 1
            if l < r:
                arr[l], arr[r] = arr[r], arr[l]
                l += 1
                r -= 1
        return "".join(arr)

面经:DJI。

BFS 广度优先搜索

695. Max Area of Island (Medium)

Given a non-empty 2D array grid of 0's and 1's, an island is a group of 1's (representing land) connected 4-directionally (horizontal or vertical.) You may assume all four edges of the grid are surrounded by water.

Find the maximum area of an island in the given 2D array. (If there is no island, the maximum area is 0.)

Example 1:
[[0,0,1,0,0,0,0,1,0,0,0,0,0],
 [0,0,0,0,0,0,0,1,1,1,0,0,0],
 [0,1,1,0,1,0,0,0,0,0,0,0,0],
 [0,1,0,0,1,1,0,0,1,0,1,0,0],
 [0,1,0,0,1,1,0,0,1,1,1,0,0],
 [0,0,0,0,0,0,0,0,0,0,1,0,0],
 [0,0,0,0,0,0,0,1,1,1,0,0,0],
 [0,0,0,0,0,0,0,1,1,0,0,0,0]]
Given the above grid, return 6. Note the answer is not 11, because the island must be connected 4-directionally.
Example 2:
[[0,0,0,0,0,0,0,0]]
Given the above grid, return 0.
Note: The length of each dimension in the given grid does not exceed 50.

BFS:

class Solution:
    def maxAreaOfIsland(self, grid: List[List[int]]) -> int:
        ans = 0
        m, n = len(grid), len(grid[0])
        for r in range(m):
            for c in range(n):
                if grid[r][c] == 1:
                    res = 0
                    q = deque()
                    q.append((r, c))
                    grid[r][c] = 0
                    while q:
                        (rq, cq) = q.popleft()
                        res += 1
                        for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
                            nr, nc = rq + dr, cq + dc
                            if 0 <= nr < m and 0 <= nc < n and grid[nr][nc] == 1:
                                grid[nr][nc] = 0
                                q.append((nr, nc))
                    ans = max(ans, res)
        return ans

DFS:

class Solution:
    def maxAreaOfIsland(self, grid: List[List[int]]) -> int:
        def dfs(r, c):
            nonlocal res
            res += 1
            for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
                nr, nc = r + dr, c + dc
                if 0 <= nr < m and 0 <= nc < n and grid[nr][nc] == 1:
                    grid[nr][nc] = 0
                    dfs(nr, nc)
        m, n = len(grid), len(grid[0])
        ans = 0
        for i in range(m):
            for j in range(n):
                if grid[i][j] == 1:
                    res = 0
                    grid[i][j] = 0
                    dfs(i, j)
                    ans = max(ans, res)
        return ans

3刷:BFS注意清零的位置要在放 queue 之后立刻清零,以防同一个点入两次

133. Clone Graph (Medium)

Given a reference of a node in a connected undirected graph.
Each node in the graph contains a value (int) and a list (List[Node]) of its neighbors.

class Node {
public int val;
public List neighbors;
}

Test case format:
For simplicity, each node's value is the same as the node's index (1-indexed). For example, the first node with val == 1, the second node with val == 2, and so on. The graph is represented in the test case using an adjacency list.
An adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.
The given node will always be the first node with val = 1. You must return the copy of the given node as a reference to the cloned graph.

Example 1:
graph example
Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
Output: [[2,4],[1,3],[2,4],[1,3]]
Explanation: There are 4 nodes in the graph.
1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).

Constraints
The number of nodes in the graph is in the range [0, 100].
1 <= Node.val <= 100
Node.val is unique for each node.
There are no repeated edges and no self-loops in the graph.
The Graph is connected and all nodes can be visited starting from the given node.

dfs:

from typing import Optional
class Solution:
    def cloneGraph(self, node: Optional['Node']) -> Optional['Node']:
        def helper(node):
            if node not in d:
                d[node] = Node(node.val)
            for neighbor in node.neighbors:
                if neighbor not in d:
                    helper(neighbor)
                d[node].neighbors.append(d[neighbor])
            return d[node]
        if not node:
            return
        d = {}
        return helper(node)

bfs

"""
# Definition for a Node.
class Node:
    def __init__(self, val = 0, neighbors = None):
        self.val = val
        self.neighbors = neighbors if neighbors is not None else []
"""

from typing import Optional
class Solution:
    def cloneGraph(self, node: 'Node') -> 'Node':        
        if not node:
            return
        d = {node: Node(node.val)}
        stack = [node]
        while stack:
            p = stack.pop()
            for neighbor in p.neighbors:
                if neighbor not in d:
                    d[neighbor] = Node(neighbor.val)
                    stack.append(neighbor)
                d[p].neighbors.append(d[neighbor])
        return d[node]

Blind 75; 高频

127. Word Ladder (Medium)

Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest transformation sequence from beginWord to endWord, such that:
Only one letter can be changed at a time.
Each transformed word must exist in the word list. Note that beginWord is not a transformed word.
Note:
Return 0 if there is no such transformation sequence.
All words have the same length.
All words contain only lowercase alphabetic characters.
You may assume no duplicates in the word list.
You may assume beginWord and endWord are non-empty and are not the same.

Example 1:
Input:
beginWord = "hit",
endWord = "cog",
wordList = ["hot","dot","dog","lot","log","cog"]
Output: 5
Explanation: As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5.

Example 2:
Input:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]
Output: 0
Explanation: The endWord "cog" is not in wordList, therefore no possible transformation.

可以输出此path:

class Solution:
    def ladderLength(self, beginWord: str, endWord: str, wordList: List[str]) -> int:
        if endWord not in wordList or len(beginWord) != len(endWord):
            return 0
        q = [[beginWord]]
        wordList = set(wordList)
        visited = set()
        while q:
            curPath = q.pop(0)
            curWord = curPath[-1]
            if curWord == endWord:
                return len(curPath)
            for i in range(len(curWord)):
                for c in [chr(x) for x in range(ord("a"), ord("z") + 1)]:
                    newW = curWord[:i] + c + curWord[i + 1:]
                    if newW in wordList and newW not in visited:
                        visited.add(newW)
                        q.append(curPath + [newW])
        return 0

精简无需输出path:

class Solution:
    def ladderLength(self, beginWord: str, endWord: str, wordList: List[str]) -> int:
        if endWord not in wordList or len(beginWord) != len(endWord):
            return 0
        q = [(beginWord, 1)]
        wordList = set(wordList)
        visited = set()
        while q:
            word, length = q.pop(0)
            if word == endWord:
                return length
            for i in range(len(word)):
                for c in [chr(i) for i in range(ord("a"), ord("z"))]:
                    newW = word[:i] + c + word[i + 1:]
                    if newW in wordList and newW not in visited:
                        visited.add(newW)
                        q.append((newW, length + 1))
        return 0

面试:DJI
三刷:注意简版需要visited

LinC 611. Knight Shortest Path (Medium)

Given a knight in a chessboard (a binary matrix with 0 as empty and 1 as barrier) with a source position, find the shortest path to a destination position, return the length of the route.
Return -1 if knight can not reached.

source and destination must be empty.
Knight can not enter the barrier.

Clarification
If the knight is at (x, y), he can get to the following positions in one step:

(x + 1, y + 2)
(x + 1, y - 2)
(x - 1, y + 2)
(x - 1, y - 2)
(x + 2, y + 1)
(x + 2, y - 1)
(x - 2, y + 1)
(x - 2, y - 1)
Example
[[0,0,0],
 [0,0,0],
 [0,0,0]]
source = [2, 0] destination = [2, 2] return 2

[[0,1,0],
 [0,0,0],
 [0,0,0]]
source = [2, 0] destination = [2, 2] return 6

[[0,1,0],
 [0,0,1],
 [0,0,0]]
source = [2, 0] destination = [2, 2] return -1

思路:没什么思路, 看了下答案,就是 BFS 硬来,需要检查走了某个方向以后是不是还是在棋盘内

"""
Definition for a point.
class Point:
    def __init__(self, a=0, b=0):
        self.x = a
        self.y = b
"""

class Solution:
    """
    @param grid: a chessboard included 0 (false) and 1 (true)
    @param source: a point
    @param destination: a point
    @return: the shortest path
    """
    def shortestPath(self, grid, source, destination):
        # write your code here
        if len(grid) == 0 or (len(grid[0]) == 1 and grid[0][0] == 1):
            return -1
        ans = 0
        dx = [1, 1, -1, -1, 2, 2, -2, -2]
        dy = [2, -2, 2, -2, 1, -1, 1, -1]
        q = collections.deque([source])
        grid[source.x][source.y] = 1
        while q:
            qlen = len(q)
            next_q = collections.deque()
            for i in range(qlen):
                pt = q.popleft()
                if pt.x == destination.x and pt.y == destination.y:
                    return ans
                for move in range(len(dx)):
                    nextPt = Point(pt.x + dx[move], pt.y + dy[move])
                    if (self.isInbound(grid, nextPt) and grid[nextPt.x][nextPt.y] == 0):
                        next_q.append(nextPt)
                        grid[nextPt.x][nextPt.y] = 1
            ans += 1
            q = next_q
        return -1
    def isInbound(self, grid, pt):
        return pt.x >= 0 and pt.x < len(grid) and pt.y >= 0 and pt.y < len(grid[0])

总结:注意 isInbound 要查的是 >=0 和 < len(), 其他的问题可以通过跑一个测试数据发现

785. Is Graph Bipartite? (Medium)

Given an undirected graph, return true if and only if it is bipartite.

Recall that a graph is bipartite if we can split it's set of nodes into two independent subsets A and B such that every edge in the graph has one node in A and another node in B.

The graph is given in the following form: graph[i] is a list of indexes j for which the edge between nodes i and j exists.  Each node is an integer between 0 and graph.length - 1.  There are no self edges or parallel edges: graph[i] does not contain i, and it doesn't contain any element twice.

Example 1:
Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Explanation:
The graph looks like this:
0----1
|    |
|    |
3----2
We can divide the vertices into two groups: {0, 2} and {1, 3}.
Example 2:
Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
Output: false
Explanation:
The graph looks like this:
0----1
| \  |
|  \ |
3----2
We cannot find a way to divide the set of nodes into two independent subsets.


Note:

graph will have length in range [1, 100].
graph[i] will contain integers in range [0, graph.length - 1].
graph[i] will not contain i or duplicate values.
The graph is undirected: if any element j is in graph[i], then i will be in graph[j].

DFS:

class Solution:
    def isBipartite(self, graph: List[List[int]]) -> bool:
        def dfs(n, color):
            if n in d:
                return color == d[n]
            d[n] = color
            return all(dfs(v, -color) for v in graph[n])
        d = {}
        return all(dfs(i, 1) for i in range(len(graph)) if i not in d)

BFS:

class Solution:
    def isBipartite(self, graph: List[List[int]]) -> bool:
        d = {}
        for i in range(len(graph)):
            if i not in d:
                d[i] = 1
                s = [(i, 1)]
                while s:
                    n, color = s.pop()
                    for v in graph[n]:
                        if v in d:
                            if color == d[v]:
                                return False
                        else:
                            d[v] = -color
                            s.append((v, -color))
        return True

3刷:思路:用染色的方法,可以用 DFS, BFS 给所有 node 染上两种色中的一种。1.如未上色,上色,给相邻节点上相反色 2.如已上色,DFS: 要和当前要上的色相同 BFS:要和pop出来的颜色相反

130. Surrounded Regions (Medium)

Given a 2D board containing 'X' and 'O' (the letter O), capture all regions surrounded by 'X'.

A region is captured by flipping all 'O's into 'X's in that surrounded region.

Example:

X X X X
X O O X
X X O X
X O X X
After running your function, the board should be:

X X X X
X X X X
X X X X
X O X X
Explanation:

Surrounded regions shouldn’t be on the border, which means that any 'O' on the border of the board are not flipped to 'X'. Any 'O' that is not on the border and it is not connected to an 'O' on the border will be flipped to 'X'. Two cells are connected if they are adjacent cells connected horizontally or vertically.
class Solution:
    def solve(self, board: List[List[str]]) -> None:
        """
        Do not return anything, modify board in-place instead.
        """
        if not board:
            return
        m, n = len(board), len(board[0])
        rule = lambda ij: 0 <= ij[0] < m and 0 <= ij[1] < n and board[ij[0]][ij[1]] == 'O'
        q = list(filter(rule, [ij for k in range(max(m, n)) for ij in [(0, k), (k, 0), (m - 1, k), (k, n - 1)]]))
        while q:
            (i, j) = q.pop()
            board[i][j] = 'S'
            q += list(filter(rule, [(i, j - 1), (i, j + 1), (i - 1, j), (i + 1, j)]))
        for i in range(m):
            for j in range(n):
                if board[i][j] == 'S':
                    board[i][j] = 'O'
                else:
                    board[i][j] = 'X'

高频:需要改为q.pop(0)才是BFS,否则是DFS,但是代码风格放在BFS比较合适

675. Cut Off Trees for Golf Event (Hard)

You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-negative 2D map, in this map:
0 represents the obstacle can't be reached.
1 represents the ground can be walked through.
The place with number bigger than 1 represents a tree can be walked through, and this positive number represents the tree's height.

You are asked to cut off all the trees in this forest in the order of tree's height - always cut off the tree with lowest height first. And after cutting, the original place has the tree will become a grass (value 1).
You will start from the point (0, 0) and you should output the minimum steps you need to walk to cut off all the trees. If you can't cut off all the trees, output -1 in that situation.
You are guaranteed that no two trees have the same height and there is at least one tree needs to be cut off.

Example 1:
Input:
[
 [1,2,3],
 [0,0,4],
 [7,6,5]
]
Output: 6

Example 2:
Input:
[
 [1,2,3],
 [0,0,0],
 [7,6,5]
]
Output: -1

Example 3:
Input:
[
 [2,3,4],
 [0,0,5],
 [8,7,6]
]
Output: 6
Explanation: You started from the point (0,0) and you can cut off the tree in (0,0) directly without walking.
class Solution:
    def cutOffTree(self, forest):
        m, n = len(forest), len(forest[0])
        trees = [[forest[r][c], r, c] for r in range(m) for c in range(n) if forest[r][c] > 1]
        trees.sort(key = lambda x: x[0])
        ans = 0
        nextR, nextC = 0, 0
        for h, r, c in trees:
            step = self.bfs(forest, nextR, nextC, r, c, m, n)
            if step == -1:
                return -1
            else:
                forest[r][c] = 1
                nextR, nextC = r, c
                ans += step
        return ans
    def bfs(self, forest, startR, startC, endR, endC, m, n):
        step = 0
        q = [(startR, startC)]
        dirs = [(-1, 0), (1, 0), (0, -1), (0, 1)]
        visited = set()
        while q:
            nq = []
            for _ in range(len(q)):
                r, c = q.pop()
                if r == endR and c == endC:
                    return step
                visited.add((r, c))
                for dr, dc in dirs:
                    if 0 <= r + dr <= m - 1 and 0 <= c + dc <= n - 1 and forest[r + dr][c + dc] != 0 and (r + dr, c + dc) not in visited:
                        nq.append((r + dr, c + dc))
            step += 1
            q = nq
        return -1

面经:Amazon。比较不偏门的算法,可惜会TLE

310. Minimum Height Trees (Medium)

For an undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example 1 :
Input: n = 4, edges = [[1, 0], [1, 2], [1, 3]]
        0
        |
        1
       / \
      2   3

Output: [1]

Example 2 :
Input: n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
     0  1  2
      \ | /
        3
        |
        4
        |
        5

Output: [3, 4]

Note:
According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.

class Solution:
    def findMinHeightTrees(self, n: int, edges: List[List[int]]) -> List[int]:
        if not edges:
            return [0]
        from collections import defaultdict
        adj = defaultdict(list)
        for u, v in edges:
            adj[u].append(v)
            adj[v].append(u)
        leaves = [k for k, v in adj.items() if len(v) == 1]
        while n > 2:
            n -= len(leaves)
            newLeaves = []
            for u in leaves:
                v = adj[u].pop()
                adj[v].remove(u)
                if len(adj[v]) == 1:
                    newLeaves.append(v)
            leaves = newLeaves
        return leaves

一刷:Facebook tag,leetcode 讨论区解法

Topological sorting 拓扑排序

LinC 127. Topological Sorting (Medium)

Given an directed graph, a topological order of the graph nodes is defined as follow:

For each directed edge A -> B in graph, A must before B in the order list.
The first node in the order can be any node in the graph with no nodes direct to it.
Find any topological order for the given graph.
You can assume that there is at least one topological order in the graph.
Clarification
Learn more about representation of graphs

Example:
For graph as follow:
graph example
The topological order can be:
[0, 1, 2, 3, 4, 5]
[0, 2, 3, 1, 5, 4]
思路:拓扑排序,算法貌似是:1.统计每个点的入度;2.将入度为 0 的点入 queue;3.从队列中 pop 点,去掉所有指向别的点的边: 相应点入度 -1;4.新入度为 0 的点入 queue

"""
Definition for a Directed graph node
class DirectedGraphNode:
    def __init__(self, x):
        self.label = x
        self.neighbors = []
"""
class Solution:
    """
    @param: graph: A list of Directed graph node
    @return: Any topological order for the given graph.
    """
    def topSort(self, graph):
        # write your code here
        if len(graph) == 0:
            return []
        ans = []
        inBound = {}
        for node in graph:
            if node not in inBound:
                inBound[node] = 0
            for neighbor in node.neighbors:
                if neighbor not in inBound:
                    inBound[neighbor] = 0
                inBound[neighbor] += 1
        q = collections.deque()
        for node in inBound:
            if inBound[node] == 0:
                q.append(node)
        while q:
            zNode = q.popleft()
            ans.append(zNode)
            for node in zNode.neighbors:
                inBound[node] -= 1
                if inBound[node] == 0:
                    q.append(node)
        return ans

总结:顺利。但是题目没有说清楚 return 的是一个拓扑排序好的 node 的 list

207. Course Schedule (Medium)

There are a total of n courses you have to take, labeled from 0 to n-1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

Example 1:
Input: 2, [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.

Example 2:
Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should
also have finished course 1. So it is impossible.

Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
You may assume that there are no duplicate edges in the input prerequisites.

class Solution:
    def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
        graph = defaultdict(list)
        indeg = Counter()
        for u, v in prerequisites:
            graph[v].append(u)
            indeg[u] += 1
        stack = [c for c in range(numCourses) if indeg[c] == 0]
        while stack:
            for course in graph[stack.pop()]:
                indeg[course] -= 1 
                if indeg[course] == 0:
                    stack.append(course)
        return sum(indeg.values()) == 0

Blind 75; 面经:Cruise

210. Course Schedule II (Medium)

There are a total of n courses you have to take, labeled from 0 to n-1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, return the ordering of courses you should take to finish all courses.
There may be multiple correct orders, you just need to return one of them. If it is impossible to finish all courses, return an empty array.

Example 1:
Input: 2, [[1,0]]
Output: [0,1]
Explanation: There are a total of 2 courses to take. To take course 1 you should have finished
course 0. So the correct course order is [0,1] .

Example 2:
Input: 4, [[1,0],[2,0],[3,1],[3,2]]
Output: [0,1,2,3] or [0,2,1,3]
Explanation: There are a total of 4 courses to take. To take course 3 you should have finished both
courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0.
So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3] .
Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
You may assume that there are no duplicate edges in the input prerequisites.

class Solution:
    def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
        p2c = collections.defaultdict(list)
        inD = [0] * numCourses
        for [c, p] in prerequisites:
            p2c[p].append(c)
            inD[c] += 1
        q = [i for i in range(numCourses) if inD[i] == 0]
        ans = q[:]
        while q:
            p = q.pop()
            for c in p2c[p]:
                inD[c] -= 1
                if inD[c] == 0:
                    ans.append(c)
                    q.append(c)            
        return ans if len(ans) == numCourses else []

2刷:面经:Cruise。时间复杂度:O(v + e) number of vertices and edges, 空间复杂度: O(v + e)

LinC 892 · Alien Dictionary (Hard)

There is a new alien language which uses the latin alphabet. However, the order among letters are unknown to you. You receive a list of non-empty words from the dictionary, where words are sorted lexicographically by the rules of this new language. Derive the order of letters in this language.

Example 1:
Input:["wrt","wrf","er","ett","rftt"]
Output:"wertf"
Explanation:
from "wrt"and"wrf" ,we can get 't'<'f'
from "wrt"and"er" ,we can get 'w'<'e'
from "er"and"ett" ,we can get 'r'<'t'
from "ett"and"rftt" ,we can get 'e'<'r'
So return "wertf"

Example 2:
Input:["z","x"]
Output:"zx"
Explanation:
from "z" and "x",we can get 'z' < 'x'
So return "zx"

import heapq
class Solution:
    def alien_order(self, words: List[str]) -> str:
        graph = {}
        for w in words:
            for c in w:
                graph[c] = []
        in_deg = collections.Counter()
        for i in range(len(words) - 1):
            w1, w2 = words[i], words[i + 1]
            if w1.startswith(w2):
                return ''
            for j in range(min(len(w1), len(w2))):
                c1, c2 = w1[j], w2[j]
                if c1 != c2:
                    graph[c1].append(c2)
                    in_deg[c2] += 1
                    break
        pq = [c for c in graph if in_deg[c] == 0]
        import heapq
        heapq.heapify(pq)
        ans = ''
        while pq:
            c = heapq.heappop(pq)
            ans += c
            for neighbor in graph[c]:
                in_deg[neighbor] -= 1
                if in_deg[neighbor] == 0:
                    heapq.heappush(pq, neighbor)
        return ans if len(ans) == len(graph) else ''

Blind 75

DFS 二叉树深度优先搜索

257. Binary Tree Paths (Easy)

Given a binary tree, return all root-to-leaf paths.
Note: A leaf is a node with no children.

Example:
Input:
   1
 /   \
2     3
 \
  5
Output: ["1->2->5", "1->3"]

Explanation: All root-to-leaf paths are: 1->2->5, 1->3

class Solution:
    def binaryTreePaths(self, root: TreeNode) -> List[str]:
        def dfs(root):
            if not root:
                return
            cur.append(str(root.val))
            if not root.left and not root.right:
                ans.append("->".join(cur))
            dfs(root.left)
            dfs(root.right)
            del cur[-1]
        ans = []
        cur = []
        dfs(root)
        return ans

8刷:注意:1.剪枝,因为cur是一个reference,递归过程中cur会变长,当前层完成返回上一级函数调用时需要将当前层加上的多余的枝减去 2.ans.append()后不要return,不然无法剪枝

113. Path Sum II (Medium)

Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given sum.
Note: A leaf is a node with no children.

Example:
Given the below binary tree and sum = 22,
      5
     / \
    4   8
   /   / \
  11  13  4
 /  \    / \
7    2  5   1
Return:
[
   [5,4,11,2],
   [5,8,4,5]
]

递归

class Solution:
    def pathSum(self, root: Optional[TreeNode], targetSum: int) -> List[List[int]]:
        def helper(root, target):
            if not root:
                return
            target -= root.val
            cur.append(root.val)
            if target == 0 and not root.left and not root.right: 
                ans.append(cur[:])
            helper(root.left, target)
            helper(root.right, target)
            del cur[-1]
        ans, cur = [], []
        helper(root, targetSum)
        return ans

遍历

class Solution:
    def pathSum(self, root: Optional[TreeNode], targetSum: int) -> List[List[int]]:
        if not root:
            return []
        ans = []
        stack = [(root, root.val, [root.val])]
        while stack:
            root, curSum, cur = stack.pop()
            if curSum == targetSum and not root.left and not root.right: 
                ans.append(cur[:])
            if root.left:
                stack.append((root.left, curSum + root.left.val , cur + [root.left.val]))
            if root.right:
                stack.append((root.right, curSum + root.right.val, cur + [root.right.val]))
        return ans

高频,面经:Quora, 大疆

437. Path Sum III (Medium)

Given the root of a binary tree and an integer targetSum, return the number of paths where the sum of the values along the path equals targetSum.

The path does not need to start or end at the root or a leaf, but it must go downwards (i.e., traveling only from parent nodes to child nodes).

Example 1:
437. Path Sum III Example 1

Input: root = [10,5,-3,3,2,null,11,3,-2,null,1], targetSum = 8
Output: 3
Explanation: The paths that sum to 8 are shown.

Example 2:
Input: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
Output: 3

Constraints:
The number of nodes in the tree is in the range [0, 1000].
-109 <= Node.val <= 109
-1000 <= targetSum <= 1000

O(n^2)

class Solution:
    def pathSum(self, root: TreeNode, sum: int) -> int:
        def dfs(root, cur):  
            nonlocal ans
            if not root:
                return
            cur += root.val
            if cur == targetSum:
                ans += 1
            dfs(root.left, cur)
            dfs(root.right, cur)
        def helper(root):
            if not root:
                return
            dfs(root, 0)
            helper(root.left)
            helper(root.right)
        ans = 0
        helper(root)
        return ans

DFS + Memo:

class Solution:
    def pathSum(self, root: TreeNode, targetSum: int) -> int:
        def dfs(root, cur):
            nonlocal ans
            if not root:
                return
            cur += root.val
            ans += memo.get(cur - targetSum, 0)
            memo[cur] = memo.get(cur, 0) + 1
            dfs(root.left, cur)
            dfs(root.right, cur)
            memo[cur] -= 1
        ans = 0
        memo = {0 : 1}
        dfs(root, 0)
        return ans

7刷:面经:Quora。初始化memo为{0 : 1}的目的是当cur == sum的时候memo需要返回1因为这是一个符合条件的路径。 leetcode讨论区有详细的讨论

DFS 基于组合的深度优先搜索

78. Subsets (Medium)

Given a set of distinct integers, nums, return all possible subsets (the power set).
Note: The solution set must not contain duplicate subsets.

Example:
Input: nums = [1,2,3]
Output:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]

class Solution:
    def subsets(self, nums):
        def dfs(idx):
            ans.append(cur[:])
            for i in range(idx, len(nums)):
                cur.append(nums[i])
                dfs(i + 1)
                del cur[-1]
        cur, ans = [], []
        dfs(0)
        return ans

7刷:高频。O(2^n)

39. Combination Sum (Medium)

Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.
The same repeated number may be chosen from candidates unlimited number of times.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.

Example 1:
Input: candidates = [2,3,6,7], target = 7,
A solution set is:
[
  [7],
  [2,2,3]
]

Example 2:
Input: candidates = [2,3,5], target = 8,
A solution set is:
[
  [2,2,2,2],
  [2,3,3],
  [3,5]
]
class Solution:
    def combinationSum(self, candidates, target):
        nums = sorted(candidates)
        def dfs(idx):
            if sum(cur) == target:
                ans.append(cur[:])
                return
            for i in range(idx, len(nums)):
                if nums[i] + sum(cur) <= target:
                    cur.append(nums[i])
                    dfs(i)
                    del cur[-1]
        ans = []
        cur = []
        dfs(0)
        return ans

7刷:高频, 面经, Quora, Amazon。需要排序的原因是为了避免结果里[2,3,2], [3,2,2]这类情况的发生,结果里只能取当前或比当前大的数。时间复杂度为O(n^k),n是candidates的数量,k是target / min(candidates)或者用target来近似(假设min是1的话),这个上限比网上一些O(n!)的说法更低

40. Combination Sum II (Medium)

Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.
Each number in candidates may only be used once in the combination.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.

Example 1:
Input: candidates = [10,1,2,7,6,1,5], target = 8,
A solution set is:
[
  [1, 7],
  [1, 2, 5],
  [2, 6],
  [1, 1, 6]
]

Example 2:
Input: candidates = [2,5,2,1,2], target = 5,
A solution set is:
[
  [1,2,2],
  [5]
]
class Solution:
    def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
        def dfs(idx):
            nonlocal target
            if sum(cur) == target:
                ans.append(cur[:])
                return
            for i in range(idx, len(nums)):
                if i > 0 and nums[i] == nums[i - 1] and not used[i - 1]:
                    continue
                if sum(cur) + nums[i] <= target:
                    used[i] = True
                    cur.append(nums[i])
                    dfs(i + 1)
                    del cur[-1]
                    used[i] = False
        nums = sorted(candidates)
        cur, ans = [], []
        used = [False] * len(nums)
        dfs(0)
        return ans

写法2:

class Solution:
    def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]::
        def dfs(idx):
            nonlocal target
            if sum(cur) == target:
                ans.append(cur[:])
                return
            for i in range(idx, len(nums)):
                if i > idx and nums[i] == nums[i - 1]:
                    continue
                if sum(cur) + nums[i] <= target:
                    cur.append(nums[i])
                    dfs(i + 1)
                    del cur[-1]
        nums = sorted(candidates)
        cur, ans = [], []
        dfs(0)
        return ans

8刷:高频, 面经, amazon。o(2^n) 注意:...if i > idx and nums[i] == nums[i - 1]: continue...

216. combination sum iii (medium)

find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
note:
all numbers will be positive integers.
the solution set must not contain duplicate combinations.

example 1:
input: k = 3, n = 7
output: [[1,2,4]]

example 2:
input: k = 3, n = 9
output: [[1,2,6], [1,3,5], [2,3,4]]
class solution:
    def combinationsum3(self, k, n):
        def dfs(i):
            if len(cur) == k and sum(cur) == n:
                ans.append(cur[:])
                return
            for j in range(i, 10):
                if len(cur) < k and sum(cur) < n:
                    cur.append(j)
                    dfs(j + 1)
                    del cur[-1]
        ans, cur = [], []
        dfs(1)
        return ans

6刷:面经

377. Combination Sum IV (Medium)

Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

Example:
nums = [1, 2, 3]
target = 4

The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)

Note that different sequences are counted as different combinations.
Therefore the output is 7.

Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?

class Solution:
    def combinationSum4(self, nums: List[int], target: int) -> int:
        def helper(cur):
            if cur in memo:
                return memo[cur]
            if cur == 0:
                return 1
            res = 0
            for num in nums:
                if cur >= num:
                    res += helper(cur - num)
            memo[cur] = res
            return res
        memo = {}
        return helper(target)

dp:

class Solution:
    def combinationSum4(self, nums: List[int], target: int) -> int:
        dp = [0] * (target + 1)
        dp[0] = 1
        for i in range(1, target + 1):
            for num in nums:
                if i >= num:
                    dp[i] += dp[i - num]
        return dp[-1]

Blind 75; 面经:Amazon

77. combinations (medium)

given two integers n and k, return all possible combinations of k numbers out of 1 ... n.

example:
input: n = 4, k = 2
output:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]

class solution:
    def combine(self, n: int, k: int) -> list[list[int]]:
        def dfs(idx):
            if len(cur) == k:
                ans.append(cur[:])
                return
            for i in range(idx, n + 1):
                cur.append(i)
                dfs(i + 1)
                del cur[-1]
        ans, cur = [], []
        dfs(1)
        return ans

4刷:面经:amazon

131. palindrome partitioning (medium)

given a string s, partition s such that every substring of the partition is a palindrome.
return all possible palindrome partitioning of s.

example:
input: "aab"
output:
[
["aa","b"],
["a","a","b"]
]

class solution:
    def partition(self, s: str) -> list[list[str]]:
        ans = []
        cur = []
        def dfs(idx):
            if idx == len(s):
                ans.append(cur[:])
                return
            for i in range(idx + 1, len(s) + 1):
                w = s[idx : i]
                if w == w[::-1]:
                    cur.append(w)
                    dfs(i)
                    del cur[-1]
        ans, cur = [], []
        dfs(0)
        return ans

6刷:高频,o(n*(2^n))

93. restore ip addresses (medium)

given a string containing only digits, restore it by returning all possible valid ip address combinations.

example:
input: "25525511135"
output: ["255.255.11.135", "255.255.111.35"]

class Solution:
    def restoreIpAddresses(self, s: str) -> List[str]:
        def dfs(idx):
            if len(cur) == 4 and idx == n:
                ans.append(".".join(cur))
                return
            for i in range(1, 4):
                if idx + i <= n:
                    num = s[idx: idx + i]
                    if int(num) < 256 and str(int(num)) == num:
                        cur.append(num)
                        dfs(idx + i)
                        del cur[-1]
        n = len(s)
        cur, ans = [], []
        dfs(0)
        return ans

11刷:高频。时间复杂度是一件有趣的事情,正常情况下分割字符串是o(2^n)复杂度,但是ip地址是有限的,因此这个题有个常数的时间复杂度上限

linc 680. split string (easy)

give a string, you can choose to split the string after one character or two adjacent characters, and make the string to be composed of only one character or two characters. output all possible results.

example
given the string "123"
return [["1","2","3"],["12","3"],["1","23"]]
class solution:
    def splitstring(self, s):
        if len(s) == 0:
            return [[]]
        def dfs(idx):
            if idx == len(s):
                ans.append(cur[:])
                return
            for i in range(1, 3):
                if idx + i <= len(s):
                    cur.append(s[idx:idx + i])
                    dfs(idx + i)
                    del cur[-1]
        ans, cur = [], []
        dfs(0)
        return ans

5刷

90. subsets ii (medium)

given a collection of integers that might contain duplicates, nums, return all possible subsets (the power set).

note: the solution set must not contain duplicate subsets.

example:

input: [1,2,2]
output:
[
  [2],
  [1],
  [1,2,2],
  [2,2],
  [1,2],
  []
]

无额外空间:

class solution:
    def subsetswithdup(self, nums: list[int]) -> list[list[int]]:
        def dfs(idx):
            ans.append(cur[:])
            for i in range(idx, len(nums)):
                if i > idx and nums[i] == nums[i - 1]:
                    continue
                cur.append(nums[i])
                dfs(i + 1)
                del cur[-1]
        nums.sort()
        ans, cur = [], [] 
        dfs(0)
        return ans

有额外空间:

class solution:
    def subsetswithdup(self, nums: list[int]) -> list[list[int]]:
        def dfs(idx):
            ans.append(cur[:])
            for i in range(idx, len(nums)):
                if i > 0 and nums[i] == nums[i - 1] and not used[i - 1]:
                    continue
                cur.append(nums[i])
                used[i] = true
                dfs(i + 1)
                used[i] = false
                del cur[-1]
        nums.sort()
        ans, cur = [], []
        used = [false for _ in range(len(nums))]
        dfs(0)
        return ans

8刷:高频,无额外空间的解法需要if i > idx and ...是因为要防止第一次就跳过重复的数字。在47题:permutations ii中因为全排列没有idx这个参数,需要用到用额外空间的写法去重

140. Word Break II (Hard)

Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, add spaces in s to construct a sentence where each word is a valid dictionary word. Return all such possible sentences.

Note:

The same word in the dictionary may be reused multiple times in the segmentation.
You may assume the dictionary does not contain duplicate words.
Example 1:

Input:
s = "catsanddog"
wordDict = ["cat", "cats", "and", "sand", "dog"]
Output:
[
"cats and dog",
"cat sand dog"
]
Example 2:

Input:
s = "pineapplepenapple"
wordDict = ["apple", "pen", "applepen", "pine", "pineapple"]
Output:
[
"pine apple pen apple",
"pineapple pen apple",
"pine applepen apple"
]
Explanation: Note that you are allowed to reuse a dictionary word.
Example 3:

Input:
s = "catsandog"
wordDict = ["cats", "dog", "sand", "and", "cat"]
Output:
[]

TLE:

class Solution:
    def wordBreak(self, s: str, wordDict: List[str]) -> List[str]:
        def dfs(idx):
            if idx == n:
                ans.append(' '.join(cur))
                return
            for i in range(idx + 1, n + 1):
                w = s[idx: i]
                if w in wordDict:
                    cur.append(w)
                    dfs(i)
                    del cur[-1]
        n = len(s)
        ans, cur = [], []
        dfs(0)
        return ans

AC: dfs + memo
写法1:

class Solution:
    def wordBreak(self, s: str, wordDict: List[str]) -> List[str]:
        def dfs(idx):
            if idx in memo:
                return memo[idx]
            res = []
            for w in wordDict:
                if s[idx:].startswith(w):
                    if w == s[idx:]:
                        res.append(w)
                    else:
                        restW = dfs(idx + len(w))
                        for item in restW:
                            res.append(w + ' ' + item)
            memo[idx] = res
            return res
        memo = {} 
        return dfs(0)

写法2:

class Solution:
    def wordBreak(self, s: str, wordDict: List[str]) -> List[str]:
        def dfs(s):
            if s in memo:
                return memo[s]
            res = []
            for w in wordDict:
                if s.startswith(w):
                    if w == s:
                        res.append(w)
                    else:
                        restW = dfs(s[len(w):])
                        for item in restW:
                            res.append(w + ' ' + item)
            memo[s] = res
            return res
        memo = {} 
        return dfs(s)

6刷:面经:Amazon。九章。TODO 时间空间复杂度

698. Partition to K Equal Sum Subsets (Medium)

Given an integer array nums and an integer k, return true if it is possible to divide this array into k non-empty subsets whose sums are all equal.

Example 1:
Input: nums = [4,3,2,3,5,2,1], k = 4
Output: true
Explanation: It's possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums.

Example 2:
Input: nums = [1,2,3,4], k = 3
Output: false

Constraints:
1 <= k <= nums.length <= 16
1 <= nums[i] <= 104
The frequency of each element is in the range [1, 4].

class Solution:
    def canPartitionKSubsets(self, nums: List[int], k: int) -> bool:
        def dfs(k, cur = 0, idx = 0):
            nonlocal ans
            if k == 1:
                ans = True
                return
            if cur == target:
                dfs(k - 1)
            for i in range(idx, n):
                if not used[i] and cur + nums[i] <= target:
                    used[i] = True
                    dfs(k, cur + nums[i], i + 1)
                    used[i] = False
        s = sum(nums)
        if s % k != 0:
            return False
        target = s // k
        n = len(nums)
        nums.sort(reverse = True)
        used = [False] * n
        ans = False
        dfs(k)
        return ans

写法2:

class Solution:
    def canPartitionKSubsets(self, nums: List[int], k: int) -> bool:
        def dfs(idx):
            nonlocal ans
            if idx == n:
                if all(v == target for v in ka):
                    ans = True
                return
            for i in range(k):
                if ka[i] + nums[idx] <= target:
                    ka[i] += nums[idx]
                    dfs(idx + 1)
                    ka[i] -= nums[idx]
        s = sum(nums)
        if s % k != 0:
            return False
        target = s // k
        ka = [0] * k
        n = len(nums)
        nums.sort(reverse = True)
        ans = False
        dfs(0)
        return ans

高频

5. Longest Palindromic Substring (Medium)

Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.

Example 1:

Input: "babad"
Output: "bab"
Note: "aba" is also a valid answer.
Example 2:

Input: "cbbd"
Output: "bb"

dfs, expand around center:

class Solution:
    def longestPalindrome(self, s: str) -> str:
        def helper(l, r):
            nonlocal ans
            if 0 <= l and r < n and s[l] == s[r]:
                if r - l + 1 > len(ans):
                    ans = s[l:r + 1]
                helper(l - 1, r + 1)
        ans = ''
        n = len(s)
        for i in range(n):
            helper(i, i)
            helper(i, i + 1)
        return ans

dp:

class Solution:
    def longestPalindrome(self, s: str) -> str:
        n = len(s)
        dp = [[False] * n for _ in range(n)]
        ans = ''
        for l in range(n - 1, -1 , -1):
            for r in range(l, n):
                if s[l] == s[r] and (r - l <= 2 or dp[l + 1][r - 1]):
                    dp[l][r] = True
                    if r - l + 1 > len(ans):
                        ans = s[l:r + 1]
        return ans

Blind 75

647. Palindromic Substrings (Medium)

Given a string s, return the number of palindromic substrings in it.
A string is a palindrome when it reads the same backward as forward.
A substring is a contiguous sequence of characters within the string.

Example 1:
Input: s = "abc"
Output: 3
Explanation: Three palindromic strings: "a", "b", "c".

Example 2:
Input: s = "aaa"
Output: 6
Explanation: Six palindromic strings: "a", "a", "a", "aa", "aa", "aaa".

Constraints:
1 <= s.length <= 1000
s consists of lowercase English letters.

写法4:

class Solution:
    def countSubstrings(self, s: str) -> int:
        def helper(l, r):
            nonlocal ans
            while 0 <= l and r <= n - 1 and s[l] == s[r]:
                ans += 1
                l -= 1
                r += 1
        n = len(s)
        ans = 0
        for i in range(n):
            helper(i, i)
            helper(i, i + 1)
        return ans
class Solution:
    def countSubstrings(self, s: str) -> int:
        n = len(s)
        ans = 0
        for r in range(n):
            for l in range(r + 1):
                if s[l:r + 1] == s[l: r + 1][::-1]:
                    ans += 1
        return ans

写法3:

class Solution:
    def countSubstrings(self, s: str) -> int:
        def helper(l, r):
            nonlocal ans
            if 0 <= l and r < n and s[l] == s[r]:
                ans += 1
                helper(l - 1, r + 1)
        ans = 0
        n = len(s)
        for i in range(n):
            helper(i, i)
            helper(i, i + 1)
        return ans

写法2:

class Solution:
    def countSubstrings(self, s: str) -> int:
        def helper(idx):
            nonlocal ans
            for e in range(idx + 1, n + 1):
                if s[idx:e] == s[idx:e][::-1]:
                    ans += 1
        n = len(s)
        ans = 0
        for i in range(n):
            helper(i)
        return ans

写法1:

class Solution:
    def countSubstrings(self, s: str) -> int:
        def helper(idx):
            nonlocal ans
            for e in range(idx + 1, n + 1):
                if s[idx:e] == s[idx:e][::-1]:
                    ans += 1
            if idx < n - 1:
                helper(idx + 1)
        n = len(s)
        ans = 0
        helper(0)
        return ans

blind 75

DFS 基于排列的深度优先搜索

46. Permutations (Medium)

Given a collection of distinct integers, return all possible permutations.

Example:
Input: [1,2,3]
Output:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
写法1:

class Solution:
    def permute(self, nums: List[int]) -> List[List[int]]:
        def dfs():
            if len(cur) == len(nums):
                ans.append(cur[:])
                return
            for n in nums:
                if c[n] > 0:
                    cur.append(n)
                    c[n] -= 1
                    dfs()
                    del cur[-1]
                    c[n] += 1
        c = Counter(nums)
        cur, ans = [], []
        dfs()
        return ans

写法2:

class Solution:
    def permute(self, nums):
        def dfs():
            if len(cur) == n:
                ans.append(cur[:])
                return
            for i in range(n):
                if not used[i]:
                    used[i] = True
                    cur.append(nums[i])
                    dfs()
                    del cur[-1]
                    used[i] = False
        cur, ans = [], []
        n = len(nums)
        used = [False] * n
        dfs()
        return ans

11刷:高频, used = [False] * len(nums); def dfs(). subset从idx开始往后扫,全排每一位都有可能放任意数字,因此要从第一位往后扫。这样就需要一个used的变量来记住哪一位已经被用过了

47. Permutations II (Medium)

Given a collection of numbers that might contain duplicates, return all possible unique permutations.

Example:
Input: [1,1,2]
Output:
[
[1,1,2],
[1,2,1],
[2,1,1]
]

写法1:

class Solution:
    def permuteUnique(self, nums: List[int]) -> List[List[int]]:
        def helper():
            if len(cur) == len(nums):
                ans.append(cur[:])
                return
            for n in counter:
                if counter[n] > 0:
                    cur.append(n)
                    counter[n] -= 1
                    helper()
                    del cur[-1]
                    counter[n] += 1
        cur, ans = [], []
        counter = Counter(nums)
        helper()
        return ans

写法2:

class Solution:
    def permuteUnique(self, nums: List[int]) -> List[List[int]]:
        def helper():
            if len(cur) == n:
                ans.append(cur[:])
                return
            for i in range(n):
                if i and nums[i] == nums[i - 1] and used[i - 1]:
                    continue
                if not used[i]:
                    cur.append(nums[i])
                    used[i] = True
                    helper()
                    del cur[-1]
                    used[i] = False
        cur, ans = [], []
        n = len(nums)
        used = [False] * n
        nums.sort()
        helper()
        return ans

14刷:高频,空间复杂度O(n)。时间复杂度:O(n*n!), 因为需要n步产生一个排列,总共有n!个可能的排列

22. Generate Parentheses (Medium)

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

For example, given n = 3, a solution set is:
[
"((()))",
"(()())",
"(())()",
"()(())",
"()()()"
]

class Solution:
    def generateParenthesis(self, n: int) -> List[str]:
        def dfs(l, r):
            if l == r == n:
                ans.append(''.join(cur))
                return
            if l < n:
                cur.append('(')
                dfs(l + 1, r)
                del cur[-1]
            if r < n and l > r:
                cur.append(')')
                dfs(l, r + 1)
                del cur[-1]
        ans, cur = [], []
        dfs(0, 0)
        return ans

9刷:高频。时间复杂度分析涉及到nth catalan number的时间复杂度,超出面试范畴,如果是产生所有可能的括号时间复杂度是O(2^2n) != O(2^n)

51. N-Queens (Hard)

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

Example:

Input: 4
Output: [
 [".Q..",  // Solution 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // Solution 2
  "Q...",
  "...Q",
  ".Q.."]
]
Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above.

写法1:

class Solution:
    def solveNQueens(self, n: int) -> List[List[str]]:
        def dfs():
            nonlocal cur, ans
            if len(cur) == n:
                ans.append(cur[:])
                return
                
            for nC in range(n):
                if nC not in cur and len(cur) + nC not in [r + c for r, c in enumerate(cur)] and len(cur) - nC not in [r - c for r, c in enumerate(cur)]:
                    cur.append(nC)
                    dfs()
                    del cur[-1]
        cur, ans = [], []
        dfs()
        return [['.' * i + 'Q' + '.' * (n - i - 1) for i in b] for b in ans]

写法2:

class Solution:
    def solveNQueens(self, n: int) -> List[List[str]]:
        def dfs():
            if len(cur) == n:
                ans.append(["." * i + "Q" + "." * (n - i - 1) for i in cur])
                return
            for nC in range(n):
                if nC not in cur and legal(nC):
                    cur.append(nC)
                    dfs()
                    del cur[-1]
        def legal(nC):
            nR = len(cur)
            for r, c in enumerate(cur):
                if nR + nC == r + c or nR - nC == r - c:
                    return False
            return True
        cur, ans = [], []
        dfs()
        return ans

6刷:高频。检查下一行的某列的合法性:举个栗子就能看出来,检查列就看此列是否已在cur中(皇后已在此列),检查/方向的对角线是坐标相加,检查\方向的对角线是坐标相减,行递增无需检查。时间:O(n^3), 空间:O(n)。因为c (count) 是row,v(value)是column, 正常 for c, v in enuerate() 就写成 for r, c in enumerate()

DFS 基于图的深度优先搜索

17. Letter Combinations of a Phone Number (Medium)

Given a string containing digits from 2-9 inclusive, return all possible letter combinations that the number could represent.
A mapping of digit to letters (just like on the telephone buttons) is given below. Note that 1 does not map to any letters.
keypad example
Example:
Input: "23"
Output: ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"].

Note:
Although the above answer is in lexicographical order, your answer could be in any order you want.

递归:

class Solution:
    def letterCombinations(self, digits: str) -> List[str]:
        if not digits:
            return []
        def dfs(idx):
            if len(cur) == len(digits):
                ans.append("".join(cur))
                return
            for c in kB[digits[idx]]:
                cur.append(c)
                dfs(idx + 1)
                del cur[-1]
        cur, ans = [], []
        kB = {"2": "abc", "3": "def", "4": "ghi", "5": "jkl", "6": "mno", "7": "pqrs", "8": "tuv", "9": "wxyz"}
        dfs(0)
        return ans

遍历:

class Solution:
    def letterCombinations(self, digits: str) -> List[str]:
        if not digits:
            return []
        kB = {'2': 'abc', '3': 'def', '4': 'ghi', '5': 'jkl', '6': 'mno', '7': 'pqrs', '8': 'tuv', '9': 'wxyz'}
        ans = ['']
        for i in range(len(digits)):
            ans = [prev + c for prev in ans for c in kB[digits[i]]]
        return ans

8刷:高频

79. Word Search (Medium)

Given a 2D board and a word, find if the word exists in the grid.

The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once.

Example:

board =
[
  ['A','B','C','E'],
  ['S','F','C','S'],
  ['A','D','E','E']
]

Given word = "ABCCED", return true.
Given word = "SEE", return true.
Given word = "ABCB", return false.
class Solution:
    def exist(self, board: List[List[str]], word: str) -> bool:
        def helper(r, c, i):
            nonlocal ans
            ch = board[r][c]
            if i == len(word) - 1:
                ans = True
                return
            board[r][c] = ''
            for nr, nc in [(r, c - 1), (r, c + 1), (r - 1, c), (r + 1, c)]:
                if 0 <= nr <= m - 1 and 0 <= nc <= n - 1 and board[nr][nc] == word[i + 1]:
                    helper(nr, nc, i + 1)
            board[r][c] = ch
        m, n = len(board), len(board[0])
        ans = False
        for r in range(m):
            for c in range(n):
                if board[r][c] == word[0]:
                    helper(r, c, 0)
        return ans

Blind 75; 高频

490. The Maze (Medium) 带锁

Lintcode 787. The Maze
There is a ball in a maze with empty spaces and walls. The ball can go through empty spaces by rolling up, down, left or right, but it won't stop rolling until hitting a wall. When the ball stops, it could choose the next direction.

Given the ball's start position, the destination and the maze, determine whether the ball could stop at the destination.

The maze is represented by a binary 2D array. 1 means the wall and 0 means the empty space. You may assume that the borders of the maze are all walls. The start and destination coordinates are represented by row and column indexes.

Example 1

Input 1: a maze represented by a 2D array
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
1 1 0 1 1
0 0 0 0 0
Input 2: start coordinate (rowStart, colStart) = (0, 4)
Input 3: destination coordinate (rowDest, colDest) = (4, 4)

Output: true
Explanation: One possible way is : left -> down -> left -> down -> right -> down -> right.
the maze example 1

Example 2

Input 1: a maze represented by a 2D array
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
1 1 0 1 1
0 0 0 0 0
Input 2: start coordinate (rowStart, colStart) = (0, 4)
Input 3: destination coordinate (rowDest, colDest) = (3, 2)

Output: false
Explanation: There is no way for the ball to stop at the destination.
the maze example 2

Note:
1.There is only one ball and one destination in the maze.
2.Both the ball and the destination exist on an empty space, and they will not be at the same position initially.
3.The given maze does not contain border (like the red rectangle in the example pictures), but you could assume the border of the maze are all walls.
4.The maze contains at least 2 empty spaces, and both the width and height of the maze won't exceed 100.
DFS:

class Solution:
    def has_path(self, maze: List[List[int]], start: List[int], destination: List[int]) -> bool:
        def helper(r, c):
            nonlocal ans
            if [r, c] == destination:
                ans = True
                return
            for dr, dc in [(-1, 0), (1, 0), (0, 1), (0, -1)]:
                nr, nc = r, c
                while 0 <= nr + dr <= len(maze) - 1 and 0 <= nc + dc <= len(maze[0]) - 1 and maze[nr + dr][nc + dc] != 1:
                    nr += dr
                    nc += dc
                if maze[nr][nc] != 2:
                    maze[nr][nc] = 2
                    helper(nr, nc)
        ans = False
        helper(start[0], start[1])
        return ans

BFS

class Solution:
    def has_path(self, maze: List[List[int]], start: List[int], destination: List[int]) -> bool:
        q = collections.deque([start])
        while q:
            r, c = q.popleft()
            if [r, c] == destination:
                return True
            for dr, dc in [(-1, 0), (1, 0), (0, 1), (0, -1)]:
                nr, nc = r, c
                while 0 <= nr + dr <= len(maze) - 1 and 0 <= nc + dc <= len(maze[0]) - 1 and maze[nr + dr][nc + dc] != 1:
                    nr += dr
                    nc += dc
                if maze[nr][nc] != 2:
                    maze[nr][nc] = 2
                    q.append([nr, nc])
        return False

面经:Amazon。确保不往回滚的关键是把滚到的终点标记为2

417. Pacific Atlantic Water Flow (Medium)

Given an m x n matrix of non-negative integers representing the height of each unit cell in a continent, the "Pacific ocean" touches the left and top edges of the matrix and the "Atlantic ocean" touches the right and bottom edges.
Water can only flow in four directions (up, down, left, or right) from a cell to another one with height equal or lower.
Find the list of grid coordinates where water can flow to both the Pacific and Atlantic ocean.

Note:
The order of returned grid coordinates does not matter.
Both m and n are less than 150.

Example:
Given the following 5x5 matrix:
  Pacific ~   ~   ~   ~   ~
       ~  1   2   2   3  (5) *
       ~  3   2   3  (4) (4) *
       ~  2   4  (5)  3   1  *
       ~ (6) (7)  1   4   5  *
       ~ (5)  1   1   2   4  *
          *   *   *   *   * Atlantic
Return:
[[0, 4], [1, 3], [1, 4], [2, 2], [3, 0], [3, 1], [4, 0]] (positions with parentheses in above matrix).

dfs:

class Solution:
    def pacificAtlantic(self, heights: List[List[int]]) -> List[List[int]]:
        m, n = len(heights), len(heights[0])
        reach_p = [[False] * n for _ in range(m)]
        reach_a = [[False] * n for _ in range(m)]
        def helper(r, c, reach):
            reach[r][c] = True
            for rd, cd in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
                nr, nc = r + rd, c + cd
                if 0 <= nr < m and 0 <= nc < n and not reach[nr][nc] and \
                        heights[r][c] <= heights[nr][nc]:
                    helper(nr, nc, reach)
        for c in range(n):
            helper(0, c, reach_p)
            helper(m - 1, c, reach_a)
        for r in range(m):
            helper(r, 0, reach_p)
            helper(r, n - 1, reach_a)
        return [[r, c] for r in range(m) for c in range(n) if reach_p[r][c] and reach_a[r][c]]

bfs:

class Solution:
    def pacificAtlantic(self, heights: List[List[int]]) -> List[List[int]]:
        m, n = len(heights), len(heights[0])
        reach_p = [[False] * n for _ in range(m)]
        reach_a = [[False] * n for _ in range(m)]
        def helper(q, reach):
            while q:
                r, c = q.popleft()
                reach[r][c] = True
                for rd, cd in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
                    nr, nc = r + rd, c + cd
                    if 0 <= nr < m and 0 <= nc < n and not reach[nr][nc] and \
                             heights[nr][nc] >= heights[r][c]:
                        q.append((nr, nc))
        pq, aq = deque(), deque()
        for r in range(m):
            pq.append((r, 0))
            aq.append((r, n - 1))
        for c in range(n):
            pq.append((0, c))
            aq.append((m - 1, c))
        helper(pq, reach_p)
        helper(aq, reach_a)
        return [[r, c] for r in range(m) for c in range(n) if reach_p[r][c] == reach_a[r][c] == True]

Blind 75; 面经:Cruise。从两个海接触的四条边上的点为起点往内陆灌,返回两个海都能灌到的点坐标

399. Evaluate Division (Medium)

Equations are given in the format A / B = k, where A and B are variables represented as strings, and k is a real number (floating point number). Given some queries, return the answers. If the answer does not exist, return -1.0.

Example:
Given a / b = 2.0, b / c = 3.0.
queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ? .
return [6.0, 0.5, -1.0, 1.0, -1.0 ].

The input is: vector<pair<string, string>> equations, vector& values, vector<pair<string, string>> queries , where equations.size() == values.size(), and the values are positive. This represents the equations. Return vector.

According to the example above:
equations = [ ["a", "b"], ["b", "c"] ],
values = [2.0, 3.0],
queries = [ ["a", "c"], ["b", "a"], ["a", "e"], ["a", "a"], ["x", "x"] ].

The input is always valid. You may assume that evaluating the queries will result in no division by zero and there is no contradiction.

DFS:

class Solution:
    def calcEquation(self, equations: List[List[str]], values: List[float], queries: List[List[str]]) -> List[float]:
        graph = collections.defaultdict(list)
        for [s, e], w in zip(equations, values):
            graph[s].append((e, w))
            graph[e].append((s, 1 / w))
        def dfs(s, e, cur):
            nonlocal res
            if s == e:
                res = cur
                return
            seen.add(s)
            for (n_s, w) in graph[s]:
                if n_s not in seen:
                    dfs(n_s, e, cur * w)
        ans = []
        for [s, e] in queries:
            seen = set()
            res = -1.0
            if s in graph:
                dfs(s, e, 1.0)
            ans.append(res)
        return ans

BFS:

class Solution:
    def calcEquation(self, equations: List[List[str]], values: List[float], queries: List[List[str]]) -> List[float]:
        graph = collections.defaultdict(list)
        for [s, e], w in zip(equations, values):
            graph[s].append((e, w))
            graph[e].append((s, 1 / w))
        ans = []
        for [s, e] in queries:
            res = -1.0
            if s in graph:
                q = deque([(s, 1.0)])
                seen = set()
                while q:
                    c_s, cur = q.popleft()
                    if c_s == e:
                        res = cur
                        break
                    seen.add(c_s)
                    for n_s, w in graph[c_s]:
                        if n_s not in seen:
                            q.append((n_s, w * cur))
            ans.append(res)                
        return ans

9刷:面经:头条。Currency Calculator一种题,先build graph,再用DFS, BFS寻最短路径的乘积

332. Reconstruct Itinerary (Medium)

Given a list of airline tickets represented by pairs of departure and arrival airports [from, to], reconstruct the itinerary in order. All of the tickets belong to a man who departs from JFK. Thus, the itinerary must begin with JFK.

Note:
If there are multiple valid itineraries, you should return the itinerary that has the smallest lexical order when read as a single string. For example, the itinerary ["JFK", "LGA"] has a smaller lexical order than ["JFK", "LGB"].
All airports are represented by three capital letters (IATA code).
You may assume all tickets form at least one valid itinerary.

Example 1:
Input: [["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]]
Output: ["JFK", "MUC", "LHR", "SFO", "SJC"]

Example 2:
Input: [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
Output: ["JFK","ATL","JFK","SFO","ATL","SFO"]
Explanation: Another possible reconstruction is ["JFK","SFO","ATL","JFK","ATL","SFO"].
But it is larger in lexical order.

class Solution:
    def findItinerary(self, tickets: List[List[str]]) -> List[str]:
        graph = defaultdict(deque)
        for [s, e] in sorted(tickets):
            graph[s].append(e)
        def dfs(s):
            while graph[s]:
                e = graph[s].popleft()
                dfs(e)
            ans.append(s)
        ans = []
        dfs("JFK")
        return ans[::-1]

2刷:高频

547. Number of Provinces (Medium)

There are n cities. Some of them are connected, while some are not. If city a is connected directly with city b, and city b is connected directly with city c, then city a is connected indirectly with city c.

A province is a group of directly or indirectly connected cities and no other cities outside of the group.

You are given an n x n matrix isConnected where isConnected[i][j] = 1 if the ith city and the jth city are directly connected, and isConnected[i][j] = 0 otherwise.

Return the total number of provinces.

Example 1:
547. Example 1 image
Input: isConnected = [[1,1,0],[1,1,0],[0,0,1]]
Output: 2

Example 2:
547. Example 2 image
Input: isConnected = [[1,0,0],[0,1,0],[0,0,1]]
Output: 3

Constraints:
1 <= n <= 200
n == isConnected.length
n == isConnected[i].length
isConnected[i][j] is 1 or 0.
isConnected[i][i] == 1
isConnected[i][j] == isConnected[j][i]

class Solution:
    def findCircleNum(self, isConnected: List[List[int]]) -> int:
        def dfs(i):
            for j, conn in enumerate(isConnected[i]):
                if conn and j not in seen:
                    seen.add(j)
                    dfs(j)
        seen = set()
        ans = 0
        for i in range(len(isConnected)):
            if i not in seen:
                seen.add(i)
                dfs(i)
                ans += 1
        return ans

高频

200. Number of Islands (Medium)

Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.

Example 1:
Input:
11110
11010
11000
00000
Output: 1

Example 2:
Input:
11000
11000
00100
00011
Output: 3

DFS

class Solution:
    def numIslands(self, grid: List[List[str]]) -> int:
        def helper(r, c):
            grid[r][c] = ''
            for nr, nc in [(r - 1, c), (r + 1, c), (r, c - 1), (r, c + 1)]:
                if 0 <= nr <= m - 1 and 0 <= nc <= n - 1 and grid[nr][nc] == '1':
                    helper(nr, nc)
        m, n = len(grid), len(grid[0])
        ans = 0
        for r in range(m):
            for c in range(n):
                if grid[r][c] == '1':
                    ans += 1
                    helper(r, c)
        return ans

BFS

class Solution:
    def numIslands(self, grid: List[List[str]]) -> int:
        ans = 0
        m, n = len(grid), len(grid[0])
        for r in range(m):
            for c in range(n):
                if grid[r][c] == '1':
                    ans += 1
                    grid[r][c] = 0
                    q = deque([(r, c)])
                    while q:
                        cr, cc = q.popleft()
                        for rd, cd in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
                           nr, nc = cr + rd, cc + cd
                            if 0 <= nr < m and 0 <= nc < n and grid[nr][nc] == '1':
                                grid[nr][nc] = '0'
                                q.append((nr, nc))
        return ans

Blind 75; 面经:Amazon

LinC 178. Graph Valid Tree (Medium)

Leetcode 261. Graph Valid Tree 带锁

Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example
Given n = 5 and edges = [[0, 1], [0, 2], [0, 3], [1, 4]], return true.

Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]], return false.
class Solution:
    def valid_tree(self, n: int, edges: List[List[int]]) -> bool:
        if len(edges) != n - 1:
            return False
        graph = collections.defaultdict(list)
        for u, v in edges:
            graph[u].append(v)
            graph[v].append(u)
        stack = [0]
        seen = set([0])
        while stack:
            i = stack.pop()
            for neighbor in graph[i]:
                if neighbor not in seen:
                    seen.add(neighbor)
                    stack.append(neighbor)
        return len(seen) == n
class Solution:
    def valid_tree(self, n: int, edges: List[List[int]]) -> bool:
        if len(edges) != n - 1:
            return False
        graph = collections.defaultdict(list)
        for u, v in edges:
            graph[u].append(v)
            graph[v].append(u)
        seen = set([0])
        def helper(i):
            for neighbor in graph[i]:
                if neighbor not in seen:
                    seen.add(neighbor)
                    helper(neighbor)
        helper(0)
        return len(seen) == n
class Solution:
    def valid_tree(self, n: int, edges: List[List[int]]) -> bool:
        if len(edges) != n - 1:
            return False
        graph = collections.defaultdict(list)
        for u, v in edges:
            graph[u].append(v)
            graph[v].append(u)
        seen = set()
        q = collections.deque([0])
        while q:
            v = q.popleft()
            seen.add(v)
            for neighbor in graph[v]:
                if neighbor not in seen:
                    q.append(neighbor)
        return len(seen) == n

Union Find:

class Solution:
    def valid_tree(self, n: int, edges: List[List[int]]) -> bool:
        if len(edges) != n - 1:
            return False
        parent = list(range(n))
        def find(i):
            if parent[i] != i:
                return find(parent[i])
            return i
        def union(x, y):
            rootX, rootY = find(x), find(y)
            parent[rootX] = rootY
        for u, v in edges:
            if find(u) == find(v):
                return False
            union(u, v)
        return True

Blind 75

721. Accounts Merge (Medium)

Given a list of accounts where each element accounts[i] is a list of strings, where the first element accounts[i][0] is a name, and the rest of the elements are emails representing emails of the account.

Now, we would like to merge these accounts. Two accounts definitely belong to the same person if there is some common email to both accounts. Note that even if two accounts have the same name, they may belong to different people as people could have the same name. A person can have any number of accounts initially, but all of their accounts definitely have the same name.

After merging the accounts, return the accounts in the following format: the first element of each account is the name, and the rest of the elements are emails in sorted order. The accounts themselves can be returned in any order.

Example 1:
Input: accounts = [["John","[email protected]","[email protected]"],["John","[email protected]","[email protected]"],["Mary","[email protected]"],["John","[email protected]"]]
Output: [["John","[email protected]","[email protected]","[email protected]"],["Mary","[email protected]"],["John","[email protected]"]]
Explanation:
The first and second John's are the same person as they have the common email "[email protected]".
The third John and Mary are different people as none of their email addresses are used by other accounts.
We could return these lists in any order, for example the answer [['Mary', '[email protected]'], ['John', '[email protected]'],
['John', '[email protected]', '[email protected]', '[email protected]']] would still be accepted.

Example 2:
Input: accounts = [["Gabe","[email protected]","[email protected]","[email protected]"],["Kevin","[email protected]","[email protected]","[email protected]"],["Ethan","[email protected]","[email protected]","[email protected]"],["Hanzo","[email protected]","[email protected]","[email protected]"],["Fern","[email protected]","[email protected]","[email protected]"]]
Output: [["Ethan","[email protected]","[email protected]","[email protected]"],["Gabe","[email protected]","[email protected]","[email protected]"],["Hanzo","[email protected]","[email protected]","[email protected]"],["Kevin","[email protected]","[email protected]","[email protected]"],["Fern","[email protected]","[email protected]","[email protected]"]]

Constraints:
1 <= accounts.length <= 1000
2 <= accounts[i].length <= 10
1 <= accounts[i][j] <= 30
accounts[i][0] consists of English letters.
accounts[i][j] (for j > 0) is a valid email.

dfs:

class Solution:
    def accountsMerge(self, accounts: List[List[str]]) -> List[List[str]]:
        d = defaultdict(set)
        for i, emails in enumerate(accounts):
            for email in emails[1:]:
                d[email].add(i)
        seen = set()
        ans = []
        def helper(i):
            seen.add(i)
            cur.update(accounts[i][1:])
            for email in accounts[i][1:]:
                for i in d[email]:
                    if i not in seen:
                        helper(i)
        for i, account in enumerate(accounts):
            if i not in seen:
                cur = set()
                helper(i)
                ans.append([account[0]] + sorted(res))
        return ans

union find:

class Solution:
    def accountsMerge(self, accounts: List[List[str]]) -> List[List[str]]:
        def find(i):
            if parent[i] != i:
                return find(parent[i])
            return i
        def union(x, y):
            px, py = find(x), find(y)
            parent[px] = py
        n = len(accounts)
        parent = list(range(n))
        e_2_i = defaultdict(list)
        for i, a in enumerate(accounts):
            for e in a[1:]:
                e_2_i[e].append(i)
        for ids in e_2_i.values():
            for i in ids[1:]:
                union(ids[0], i)
        res = defaultdict(set)
        for i, a in enumerate(accounts):
            res[find(i)].update(a[1:])
        return [[accounts[k][0]] + sorted(v) for k, v in res.items()]

高频

LinC 3651 · Number of Connected Components in an Undirected Graph (Medium)

In this problem, there is an undirected graph with n nodes. There is also an edges array. Where edges[i] = [a, b] means that there is an edge between node a and node b in the graph.
You need to return the number of connected components in that graph.

Example 1
Input:
3
[[0,1], [0,2]]
Output:
1

Example 2
Input:
6
[[0,1], [1,2], [2, 3], [4, 5]]
Output:
2

class Solution:
    """
    @param n: the number of vertices
    @param edges: the edges of undirected graph
    @return: the number of connected components
    """
    def count_components(self, n: int, edges: List[List[int]]) -> int:
        graph = collections.defaultdict(list)
        for v1, v2 in edges:
            graph[v1].append(v2)
            graph[v2].append(v1)
        seen = set()
        def helper(node):
            if node not in seen:
                seen.add(node)
                for neighbor in graph[node]:
                    helper(neighbor)
        ans = 0
        for i in range(n):
            if i not in seen:
                ans += 1
                helper(i)
        return ans

Blind 75
todo union find 写法

数据结构

Array 数组

LinC 6. Merge Two Sorted Arrays (Easy)

Merge two given sorted integer array A and B into a new sorted integer array.

Example
A=[1,2,3,4]

B=[2,4,5,6]

return [1,2,2,3,4,4,5,6]

Challenge
How can you optimize your algorithm if one array is very large and the other is very small?

思路:热身题,直接做

class Solution:
    """
    @param A: sorted integer array A
    @param B: sorted integer array B
    @return: A new sorted integer array
    """
    def mergeSortedArray(self, A, B):
        # write your code here
        ans = []
        indexA = 0
        indexB = 0
        indexC = 0
        while indexC < len(A) + len(B):
            if indexA == len(A) or indexB == len(B):
                if indexA == len(A):
                    ans.append(B[indexB])
                    indexB += 1
                else:
                    ans.append(A[indexA])
                    indexA += 1
            else:
                if A[indexA] < B[indexB]:
                    ans.append(A[indexA])
                    indexA += 1
                else:
                    ans.append(B[indexB])
                    indexB += 1
            indexC += 1
        return ans

总结:非常值得刷的一道热身题, 需要考虑两个 array 越界的问题。看了下答案用三个 while 循环也可以。

88. Merge Sorted Array (Easy)

Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.

Note:

The number of elements initialized in nums1 and nums2 are m and n respectively.
You may assume that nums1 has enough space (size that is greater or equal to m + n) to hold additional elements from nums2.
Example:

Input:
nums1 = [1,2,3,0,0,0], m = 3
nums2 = [2,5,6],       n = 3

Output: [1,2,2,3,5,6]
class Solution:
    def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:
        m -= 1
        n -= 1
        p = len(nums1) - 1
        while m >= 0 and n >= 0:
            if nums1[m] < nums2[n]:
                nums1[p] = nums2[n]
                n -= 1
            else:
                nums1[p] = nums1[m]
                m -= 1    
            p -= 1
        if n >= 0:
            nums1[:p + 1] = nums2[:n + 1]

2刷,高频

73. Set Matrix Zeroes (Medium)

Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in-place.

Example 1:

Input:
[
  [1,1,1],
  [1,0,1],
  [1,1,1]
]
Output:
[
  [1,0,1],
  [0,0,0],
  [1,0,1]
]
Example 2:

Input:
[
  [0,1,2,0],
  [3,4,5,2],
  [1,3,1,5]
]
Output:
[
  [0,0,0,0],
  [0,4,5,0],
  [0,3,1,0]
]
Follow up:

A straight forward solution using O(mn) space is probably a bad idea.
A simple improvement uses O(m + n) space, but still not the best solution.
Could you devise a constant space solution?

O(m+n)空间

class Solution:
    def setZeroes(self, matrix: List[List[int]]) -> None:
        """
        Do not return anything, modify matrix in-place instead.
        """
        m, n = len(matrix), len(matrix[0])
        z_r, z_c = [1] * m, [1] * n
        for r in range(m):
            for c in range(n):
                if matrix[r][c] == 0:
                    z_r[r] = 0
                    z_c[c] = 0
        for r in range(m):
            for c in range(n):
                if z_r[r] == 0 or z_c[c] == 0:
                    matrix[r][c] = 0

O(1)空间:

class Solution:
    def setZeroes(self, matrix: List[List[int]]) -> None:
        m, n = len(matrix), len(matrix[0])
        top_z, left_z = 0 in matrix[0], 0 in list(zip(*matrix))[0] 
        for r in range(1, m):
            for c in range(1, n):
                if matrix[r][c] == 0:
                    matrix[r][0] = 0
                    matrix[0][c] = 0
        for r in range(1, m):
            for c in range(1, n):
                if matrix[r][0] == 0 or matrix[0][c] == 0:
                    matrix[r][c] = 0
        if top_z:
            for c in range(n):
                matrix[0][c] = 0
        if left_z:
            for r in range(m):
                matrix[r][0] = 0

Blind 75

LinC 839. Merge Two Sorted Interval Lists (Easy)

Merge two sorted (ascending) lists of interval and return it as a new sorted list. The new sorted list should be made by splicing together the intervals of the two lists and sorted in ascending order.

The intervals in the given list do not overlap.
The intervals in different lists may overlap.
Example
Given list1 = [(1,2),(3,4)] and list2 = [(2,3),(5,6)], return [(1,4),(5,6)].

思路:思路跟上题 merge interval一样,可以不做

"""
Definition of Interval.
class Interval(object):
    def __init__(self, start, end):
        self.start = start
        self.end = end
"""
class Solution:
    """
    @param list1: one of the given list
    @param list2: another list
    @return: the new sorted list of interval
    """
    def mergeTwoInterval(self, list1, list2):
        # write your code here
        if not list1:
            return list2
        if not list2:
            return list1
        list3 = list1 + list2
        list3.sort(key=lambda x: x.start)
        ans = [list3[0]]
        for i in range(1, len(list3)):
            if list3[i].start <= ans[-1].end:
                ans[-1].end = max(list3[i].end, ans[-1].end)
            else:
                ans.append(list3[i])
        return ans

二刷:删掉一刷代码,统一思路

228. Summary Ranges (Medium)

Given a sorted integer array without duplicates, return the summary of its ranges.

Example 1:

Input:  [0,1,2,4,5,7]
Output: ["0->2","4->5","7"]
Explanation: 0,1,2 form a continuous range; 4,5 form a continuous range.
Example 2:

Input:  [0,2,3,4,6,8,9]
Output: ["0","2->4","6","8->9"]
Explanation: 2,3,4 form a continuous range; 8,9 form a continuous range.
# 先写 O(n) 的再优化
class Solution:
    def summaryRanges(self, nums):
        """
        :type nums: List[int]
        :rtype: List[str]
        """
        if not nums:
            return []
        ans, start = [], 0
        def addToRes(l, r):
            if l == r:
                ans.append(str(nums[l]))
            else:
                ans.append(f"{str(nums[l])}->{str(nums[r])}")
        for i in range(len(nums) - 1):
            if nums[i] != nums[i + 1] - 1:
                addToRes(start, i)
                start = i + 1
        addToRes(start, len(nums) - 1)
        return ans

二刷:删掉了一刷的思路,代码和总结。 ..start = 0...def addToRes(l, r):...start = i + 1...

67. Add Binary (Easy)

Given two binary strings, return their sum (also a binary string).

The input strings are both non-empty and contains only characters 1 or 0.

Example 1:

Input: a = "11", b = "1"
Output: "100"
Example 2:

Input: a = "1010", b = "1011"
Output: "10101"

高频

class Solution:
    def addBinary(self, a: str, b: str) -> str:
        m = len(a)
        n = len(b)
        l = max(m, n)
        i = 1
        carry = 0
        ans = ""
        while i <= l:
            if i <= m and i <= n:
                val = int(a[-i]) + int(b[-i]) + carry
            elif i <= m:
                val = int(a[-i]) + carry
            elif i <= n:
                val = int(b[-i]) + carry
            if val > 1:
                carry = 1
            else:
                carry = 0
            ans = str(val % 2) + ans
            i += 1
        if carry == 1:
            ans = "1" + ans
        return ans

总结:...i = 1...while i <= l:...if val > 1: carry = 1; else: carry = 0; ans = str(val % 2) + ans; i += 1...

12. Integer to Roman (Medium)

Roman numerals are represented by seven different symbols: I, V, X, L, C, D and M.

Symbol       Value
I             1
V             5
X             10
L             50
C             100
D             500
M             1000
For example, two is written as II in Roman numeral, just two one's added together. Twelve is written as, XII, which is simply X + II. The number twenty seven is written as XXVII, which is XX + V + II.

Roman numerals are usually written largest to smallest from left to right. However, the numeral for four is not IIII. Instead, the number four is written as IV. Because the one is before the five we subtract it making four. The same principle applies to the number nine, which is written as IX. There are six instances where subtraction is used:

I can be placed before V (5) and X (10) to make 4 and 9.
X can be placed before L (50) and C (100) to make 40 and 90.
C can be placed before D (500) and M (1000) to make 400 and 900.
Given an integer, convert it to a roman numeral. Input is guaranteed to be within the range from 1 to 3999.

Example 1:

Input: 3
Output: "III"
Example 2:

Input: 4
Output: "IV"
Example 3:

Input: 9
Output: "IX"
Example 4:

Input: 58
Output: "LVIII"
Explanation: L = 50, V = 5, III = 3.
Example 5:

Input: 1994
Output: "MCMXCIV"
Explanation: M = 1000, CM = 900, XC = 90 and IV = 4.

高频

class Solution:
    def intToRoman(self, num: int) -> str:
        n = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
        l = ["M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"]
        ans = ""
        for i, v in enumerate(n):
            if num == 0:
                return ans
            t = num // v
            ans += l[i] * t
            num %= v
        return ans

总结:有了n和l俩数组就是easy了

43. Multiply Strings (Medium)

Given two non-negative integers num1 and num2 represented as strings, return the product of num1 and num2, also represented as a string.

Example 1:

Input: num1 = "2", num2 = "3"
Output: "6"
Example 2:

Input: num1 = "123", num2 = "456"
Output: "56088"
Note:

The length of both num1 and num2 is < 110.
Both num1 and num2 contain only digits 0-9.
Both num1 and num2 do not contain any leading zero, except the number 0 itself.
You must not use any built-in BigInteger library or convert the inputs to integer directly.
class Solution:
    def multiply(self, num1: str, num2: str) -> str:
        res = [0 for _ in range(len(num1) + len(num2))]
        num1 = num1[::-1]
        num2 = num2[::-1]
        for i in range(len(num1)):
            for j in range(len(num2)):
                res[i + j] += int(num1[i]) * int(num2[j])

        for i in range(len(res)):
            d = res[i] % 10
            c = res[i] // 10
            if i < len(res) - 1:
                res[i + 1] += c
            res[i] = d

        res.reverse()
        while res[0] == 0 and len(res) > 1:
            del res[0]
        return "".join(str(i) for i in res)

高频:...for i in range(len(res)):...res[i] = d...while res[0] == 0 and len(res) > 1:...

128. Longest Consecutive Sequence (Medium)

Given an unsorted array of integers, find the length of the longest consecutive elements sequence.

Your algorithm should run in O(n) complexity.

Example:

Input: [100, 4, 200, 1, 3, 2]
Output: 4
Explanation: The longest consecutive elements sequence is [1, 2, 3, 4]. Therefore its length is 4.
class Solution:
    def longestConsecutive(self, nums: List[int]) -> int:
        ans = 0
        nums = set(nums)
        for num in nums:
            if num - 1 not in nums:
                cur = 0
                while num in nums:
                    cur += 1
                    num += 1
                ans = max(ans, cur)
        return ans

Blind 75; 高频:记忆型题。不应作为高频题

66. Plus One (Easy)

Given a non-empty array of digits representing a non-negative integer, plus one to the integer.

The digits are stored such that the most significant digit is at the head of the list, and each element in the array contain a single digit.

You may assume the integer does not contain any leading zero, except the number 0 itself.

Example 1:

Input: [1,2,3]
Output: [1,2,4]
Explanation: The array represents the integer 123.
Example 2:

Input: [4,3,2,1]
Output: [4,3,2,2]
Explanation: The array represents the integer 4321.
class Solution:
    def plusOne(self, digits: List[int]) -> List[int]:
        digits.reverse()
        c = 0
        for i, d in enumerate(digits):
            if i == 0:
                d += 1
            else:
                d += c
            c = d // 10
            d = d % 10
            digits[i] = d
        if c > 0:
            digits.append(1)
        return digits[::-1]

高频

9. Palindrome Number (Easy)

Determine whether an integer is a palindrome. An integer is a palindrome when it reads the same backward as forward.

Example 1:

Input: 121
Output: true
Example 2:

Input: -121
Output: false
Explanation: From left to right, it reads -121. From right to left, it becomes 121-. Therefore it is not a palindrome.
Example 3:

Input: 10
Output: false
Explanation: Reads 01 from right to left. Therefore it is not a palindrome.
Follow up:

Coud you solve it without converting the integer to a string?
class Solution:
    def isPalindrome(self, x: int) -> bool:
        if x < 0:
            return False
        ox = x
        nx = 0
        while x:
            ln = x % 10
            nx = nx * 10 + ln
            x //= 10
        return nx == ox

2刷:高频

48. Rotate Image (Medium)

You are given an n x n 2D matrix representing an image.
Rotate the image by 90 degrees (clockwise).
Note:
You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.

Example 1:
Given input matrix =
[
  [1,2,3],
  [4,5,6],
  [7,8,9]
],

rotate the input matrix in-place such that it becomes:
[
  [7,4,1],
  [8,5,2],
  [9,6,3]
]
Example 2:

Given input matrix =
[
  [ 5, 1, 9,11],
  [ 2, 4, 8,10],
  [13, 3, 6, 7],
  [15,14,12,16]
],

rotate the input matrix in-place such that it becomes:
[
  [15,13, 2, 5],
  [14, 3, 4, 1],
  [12, 6, 8, 9],
  [16, 7,10,11]
]

上下翻转后对角线翻转:

class Solution:
    def rotate(self, matrix: List[List[int]]) -> None:
        matrix.reverse()
        n = len(matrix)
        for r in range(n):
            for c in range(r + 1, n):
                matrix[r][c], matrix[c][r] = matrix[c][r], matrix[r][c]

对角线翻转后左右翻转:

class Solution:
    def rotate(self, matrix: List[List[int]]) -> None:
        n = len(matrix)
        for r in range(n):
            for c in range(r + 1, n):
                matrix[r][c], matrix[c][r] = matrix[c][r], matrix[r][c]
        for r in range(n):
            for c in range(n // 2):
                matrix[r][c], matrix[r][n - 1 - c] = matrix[r][n - 1 - c], matrix[r][c]

2刷:高频:需要懂得顺时针转就是上下翻转以后对角线翻转,逆时针转就是左右翻转以后对角线翻转

54. Spiral Matrix (Medium)

Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral order.

Example 1:

Input:
[
 [ 1, 2, 3 ],
 [ 4, 5, 6 ],
 [ 7, 8, 9 ]
]
Output: [1,2,3,6,9,8,7,4,5]
Example 2:

Input:
[
  [1, 2, 3, 4],
  [5, 6, 7, 8],
  [9,10,11,12]
]
Output: [1,2,3,4,8,12,11,10,9,5,6,7]

写法3:

class Solution:
    def spiralOrder(self, matrix: List[List[int]]) -> List[int]:
        R, D, L, U = (0, 1), (1, 0), (0, -1), (-1, 0)
        ans = []
        cir = 0
        m, n = len(matrix), len(matrix[0])
        r, c = 0, 0
        mode = R
        for _ in range(m * n):
            ans.append(matrix[r][c])
            if mode == R and c == n - 1 - cir:
                mode = D
            elif mode == D and r == m - 1 - cir:
                mode = L
            elif mode == L and c == cir:
                mode = U
            elif mode == U and r == cir + 1:
                mode = R
                cir += 1
            r += mode[0]
            c += mode[1]
        return ans

写法2:

class Solution:
    def spiralOrder(self, matrix: List[List[int]]) -> List[int]:
        m, n = len(matrix), len(matrix[0])
        top, right, bottom, left = 0, n - 1, m - 1, 0
        ans = []
        while top <= bottom and left <= right:
            ans.extend(matrix[top][left:right + 1])
            top += 1
            if top <= bottom and left <= right:
                ans.extend([matrix[r][right] for r in range(top, bottom + 1)])
                right -= 1
            if top <= bottom and left <= right:
                ans.extend([matrix[bottom][c] for c in range(right, left - 1, -1)])
                bottom -= 1
            if top <= bottom and left <= right:
                ans.extend([matrix[r][left] for r in range(bottom, top - 1, -1)])
                left += 1
        return ans

写法1:

class Solution:
    def spiralOrder(self, matrix: List[List[int]]) -> List[int]:
        m, n = len(matrix), len(matrix[0])
        top, right, bottom, left = 0, n - 1, m - 1, 0
        ans = []
        r, c = 0, 0
        dir = 'r'
        while len(ans) < m * n:
            ans.append(matrix[r][c])
            if dir == 'r':
                if c < right:
                    c += 1
                else:
                    dir = 'd'
                    top += 1
                    r += 1
            elif dir == 'd':
                if r < bottom:
                    r += 1
                else:
                    dir = 'l'
                    right -= 1
                    c -= 1
            elif dir == 'l':
                if c > left:
                    c -= 1
                else:
                    dir = 'u'
                    bottom -= 1
                    r -= 1
            elif dir == 'u':
                if r > top:
                    r -= 1
                else:
                    dir = 'r'
                    left += 1
                    c += 1
        return ans

Blind 75:高频

59. Spiral Matrix II (Medium)

Given a positive integer n, generate a square matrix filled with elements from 1 to n2 in spiral order.

Example:

Input: 3
Output:
[
 [ 1, 2, 3 ],
 [ 8, 9, 4 ],
 [ 7, 6, 5 ]
]
class Solution:
    def generateMatrix(self, n: int) -> List[List[int]]:
        ans = [[0] * n for _ in range(n)]
        R, D, L, U = (0, 1), (1, 0), (0, -1), (-1, 0)
        mode = R
        r, c = 0, 0
        cir = 0
        for i in range(1, n * n + 1):
            ans[r][c] = i
            if mode == R and c == n - 1 - cir:
                mode = D
            elif mode == D and r == n - 1 - cir:
                mode = L
            elif mode == L and c == cir:
                mode = U
            elif mode == U and r == cir + 1:
                mode = R 
                cir += 1
            r += mode[0]
            c += mode[1]
        return ans

高频

68. Text Justification (Hard)

Given an array of words and a width maxWidth, format the text such that each line has exactly maxWidth characters and is fully (left and right) justified.

You should pack your words in a greedy approach; that is, pack as many words as you can in each line. Pad extra spaces ' ' when necessary so that each line has exactly maxWidth characters.

Extra spaces between words should be distributed as evenly as possible. If the number of spaces on a line do not divide evenly between words, the empty slots on the left will be assigned more spaces than the slots on the right.

For the last line of text, it should be left justified and no extra space is inserted between words.

Note:

A word is defined as a character sequence consisting of non-space characters only.
Each word's length is guaranteed to be greater than 0 and not exceed maxWidth.
The input array words contains at least one word.
Example 1:

Input:
words = ["This", "is", "an", "example", "of", "text", "justification."]
maxWidth = 16
Output:
[
   "This    is    an",
   "example  of text",
   "justification.  "
]
Example 2:

Input:
words = ["What","must","be","acknowledgment","shall","be"]
maxWidth = 16
Output:
[
  "What   must   be",
  "acknowledgment  ",
  "shall be        "
]
Explanation: Note that the last line is "shall be    " instead of "shall     be",
             because the last line must be left-justified instead of fully-justified.
             Note that the second line is also left-justified becase it contains only one word.
Example 3:

Input:
words = ["Science","is","what","we","understand","well","enough","to","explain",
         "to","a","computer.","Art","is","everything","else","we","do"]
maxWidth = 20
Output:
[
  "Science  is  what we",
  "understand      well",
  "enough to explain to",
  "a  computer.  Art is",
  "everything  else  we",
  "do                  "
]
class Solution:
    def fullJustify(self, words: List[str], maxWidth: int) -> List[str]:
        ans, line, letter_count = [], [], 0
        for w in words:
            if letter_count + len(w) + len(line) > maxWidth:
                for i in range(maxWidth - letter_count):
                    line[i % (len(line) - 1 or 1)] += ' '
                ans.append(''.join(line))
                line = []
                letter_count = 0
            line += [w]
            letter_count += len(w)
        ans.append(' '.join(line).ljust(maxWidth))
        return ans

高频:需要知道很巧妙的round robin填空格的方法:...line[i % (len(line) - 1 or 1)] += ' '...,str.ljust(width[, fillchar])默认填空格

36. Valid Sudoku (Medium)

Determine if a 9x9 Sudoku board is valid. Only the filled cells need to be validated according to the following rules:
Each row must contain the digits 1-9 without repetition.
Each column must contain the digits 1-9 without repetition.
Each of the 9 3x3 sub-boxes of the grid must contain the digits 1-9 without repetition.
A partially filled sudoku which is valid.
The Sudoku board could be partially filled, where empty cells are filled with the character '.'.

Example 1:
Input:
[
  ["5","3",".",".","7",".",".",".","."],
  ["6",".",".","1","9","5",".",".","."],
  [".","9","8",".",".",".",".","6","."],
  ["8",".",".",".","6",".",".",".","3"],
  ["4",".",".","8",".","3",".",".","1"],
  ["7",".",".",".","2",".",".",".","6"],
  [".","6",".",".",".",".","2","8","."],
  [".",".",".","4","1","9",".",".","5"],
  [".",".",".",".","8",".",".","7","9"]
]
Output: true

Example 2:
Input:
[
  ["8","3",".",".","7",".",".",".","."],
  ["6",".",".","1","9","5",".",".","."],
  [".","9","8",".",".",".",".","6","."],
  ["8",".",".",".","6",".",".",".","3"],
  ["4",".",".","8",".","3",".",".","1"],
  ["7",".",".",".","2",".",".",".","6"],
  [".","6",".",".",".",".","2","8","."],
  [".",".",".","4","1","9",".",".","5"],
  [".",".",".",".","8",".",".","7","9"]
]
Output: false
Explanation: Same as Example 1, except with the 5 in the top left corner being
    modified to 8. Since there are two 8's in the top left 3x3 sub-box, it is invalid.

Note:
A Sudoku board (partially filled) could be valid but is not necessarily solvable.
Only the filled cells need to be validated according to the mentioned rules.
The given board contain only digits 1-9 and the character '.'.
The given board size is always 9x9.

class Solution:
    def isValidSudoku(self, board: List[List[str]]) -> bool:
        def validate(r):
            s = set()
            for c in r:
                if c in s:
                    return False
                if c != '.':
                    s.add(c)
            return True
        if any((not validate(r) for r in board)):
            return False
        if any((not validate(c) for c in zip(*board))):
            return False
        for r in range(0, 9, 3):
            for c in range(0, 9, 3):
                sb = []
                for i in range(3):
                    for j in range(3):
                        sb.append(board[r + i][c + j])
                if not validate(sb):
                    return False
        return True

2刷:高频, 面经:维萨。*用来unpack数组,zip(*board)用来返回一个用每行同一列位置的元素拼成的新的tuple的iterator

38. Count and Say (Easy)

The count-and-say sequence is the sequence of integers with the first five terms as following:

1.     1
2.     11
3.     21
4.     1211
5.     111221
1 is read off as "one 1" or 11.
11 is read off as "two 1s" or 21.
21 is read off as "one 2, then one 1" or 1211.

Given an integer n where 1 ≤ n ≤ 30, generate the nth term of the count-and-say sequence.
Note: Each term of the sequence of integers will be represented as a string.

Example 1:

Input: 1
Output: "1"
Example 2:

Input: 4
Output: "1211"

用itertools.groupby():

class Solution:
    def countAndSay(self, n: int) -> str:
        ans = "1"
        for i in range(n - 1):
            t = ""
            for d, g in itertools.groupby(ans):
                cnt = len(list(g))
                t += str(cnt) + str(d)
            ans = t
        return ans

不用groupby:

class Solution:
    def countAndSay(self, n: int) -> str:
        ans = "1"
        for i in range(n - 1):
            res = ""
            t = ans + "#"
            cnt = 1
            for i in range(len(t) - 1):
                if t[i] == t[i + 1]:
                    cnt += 1
                else:
                    res += str(cnt) + t[i]
                    cnt = 1
            ans = res
        return ans

高频:题目描述不是很清楚,用groupby:...for d, g in itertools.groupby():...。不用groupby:...res = ""; t = ans + "#"...

14. Longest Common Prefix (Easy)

Write a function to find the longest common prefix string amongst an array of strings.

If there is no common prefix, return an empty string "".

Example 1:

Input: ["flower","flow","flight"]
Output: "fl"
Example 2:

Input: ["dog","racecar","car"]
Output: ""
Explanation: There is no common prefix among the input strings.
Note:

All given inputs are in lowercase letters a-z.
class Solution:
    def longestCommonPrefix(self, strs: List[str]) -> str:
        if not strs:
            return ""
        ans = strs[0]
        for i in range(1, len(strs)):
            if not ans:
                return ""
            else:
                j = 0
                while j < len(ans) and j < len(strs[i]) and ans[j] == strs[i][j]:
                    j += 1
                ans = ans[:j]
        return ans

高频:
面经:Quora。删掉了高频的总结,换成我自己想出来的解法。

119. Pascal's Triangle II (Easy)

Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle.
Note that the row index starts from 0.
In Pascal's triangle, each number is the sum of the two numbers directly above it.

Example:
Input: 3
Output: [1,3,3,1]

Follow up:
Could you optimize your algorithm to use only O(k) extra space?
class Solution:
    def getRow(self, rowIndex: int) -> List[int]:
        ans = [1]
        for i in range(rowIndex):
            ans = [x + y for x, y in zip(ans + [0], [0] + ans)]
        return ans

高频:很巧妙的...[x + y for x, y in zip(ans + [0], [0] + ans)]...

6. ZigZag Conversion (Medium)

The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility)

P   A   H   N
A P L S I I G
Y   I   R
And then read line by line: "PAHNAPLSIIGYIR"

Write the code that will take a string and make this conversion given a number of rows:

string convert(string s, int numRows);
Example 1:

Input: s = "PAYPALISHIRING", numRows = 3
Output: "PAHNAPLSIIGYIR"
Example 2:

Input: s = "PAYPALISHIRING", numRows = 4
Output: "PINALSIGYAHRPI"
Explanation:

P     I    N
A   L S  I G
Y A   H R
P     I
class Solution:
    def convert(self, s: str, numRows: int) -> str:
        if numRows == 1:
            return s
        res = [''] * numRows
        r, d = 0, 1
        for c in s:
            res[r] += c
            if r == 0:
                d = 1
            if r == numRows - 1:
                d = -1
            r += d
        return ''.join(res)

4刷:高频

8. String to Integer (atoi) (Medium)

Implement atoi which converts a string to an integer.

The function first discards as many whitespace characters as necessary until the first non-whitespace character is found. Then, starting from this character, takes an optional initial plus or minus sign followed by as many numerical digits as possible, and interprets them as a numerical value.

The string can contain additional characters after those that form the integral number, which are ignored and have no effect on the behavior of this function.

If the first sequence of non-whitespace characters in str is not a valid integral number, or if no such sequence exists because either str is empty or it contains only whitespace characters, no conversion is performed.

If no valid conversion could be performed, a zero value is returned.

Note:

Only the space character ' ' is considered as whitespace character.
Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−231,  231 − 1]. If the numerical value is out of the range of representable values, INT_MAX (231 − 1) or INT_MIN (−231) is returned.
Example 1:

Input: "42"
Output: 42
Example 2:

Input: "   -42"
Output: -42
Explanation: The first non-whitespace character is '-', which is the minus sign.
             Then take as many numerical digits as possible, which gets 42.
Example 3:

Input: "4193 with words"
Output: 4193
Explanation: Conversion stops at digit '3' as the next character is not a numerical digit.
Example 4:

Input: "words and 987"
Output: 0
Explanation: The first non-whitespace character is 'w', which is not a numerical
             digit or a +/- sign. Therefore no valid conversion could be performed.
Example 5:

Input: "-91283472332"
Output: -2147483648
Explanation: The number "-91283472332" is out of the range of a 32-bit signed integer.
             Thefore INT_MIN (−231) is returned.
class Solution:
    def myAtoi(self, str: str) -> int:
        return self.helper(str)
    def helper(self, s):
        s = s.strip()
        if not s:
            return 0
        valid = [str(i) for i in range(10)]
        signs = '+-'
        if s[0] not in valid and s[0] not in signs:
            return 0
        sign = 1
        if s[0] == '-':
            sign = -1
        if s[0] in signs:
            s = s[1:]
        ans = ''
        for l in s:
            if l in valid:
                ans += l
                if sign == -1 and -int(ans) < -pow(2, 31):
                    return -pow(2, 31)
                if sign == 1 and int(ans) > pow(2, 31) - 1:
                    return pow(2, 31) - 1
            else:
                return sign * int(ans) if ans else 0
        return sign * int(ans) if ans else 0

高频:从例子之多就能看出来要考虑的case非常多。比的是细致

937. Reorder Log Files (Easy)

You have an array of logs.  Each log is a space delimited string of words.

For each log, the first word in each log is an alphanumeric identifier.  Then, either:

Each word after the identifier will consist only of lowercase letters, or;
Each word after the identifier will consist only of digits.
We will call these two varieties of logs letter-logs and digit-logs.  It is guaranteed that each log has at least one word after its identifier.

Reorder the logs so that all of the letter-logs come before any digit-log.  The letter-logs are ordered lexicographically ignoring identifier, with the identifier used in case of ties.  The digit-logs should be put in their original order.

Return the final order of the logs.
Example 1:

Input: ["a1 9 2 3 1","g1 act car","zo4 4 7","ab1 off key dog","a8 act zoo"]
Output: ["g1 act car","a8 act zoo","ab1 off key dog","a1 9 2 3 1","zo4 4 7"]

Note:

0 <= logs.length <= 100
3 <= logs[i].length <= 100
logs[i] is guaranteed to have an identifier, and a word after the identifier.
class Solution:
    def reorderLogFiles(self, logs: List[str]) -> List[str]:
        nums, letters = [], []
        for log in logs:
            words = log.split(' ')
            if words[1].isdigit():
                nums.append(log)
            else:
                letters.append(log)
        letters.sort(key = lambda x: x.split(' ')[0])
        letters.sort(key = lambda x: x.split(' ')[1:])
        return letters + nums

面经:Amazon,用key function,sort是stable

189. Rotate Array (Easy)

Given an array, rotate the array to the right by k steps, where k is non-negative.

Example 1:
Input: [1,2,3,4,5,6,7] and k = 3
Output: [5,6,7,1,2,3,4]
Explanation:
rotate 1 steps to the right: [7,1,2,3,4,5,6]
rotate 2 steps to the right: [6,7,1,2,3,4,5]
rotate 3 steps to the right: [5,6,7,1,2,3,4]

Example 2:
Input: [-1,-100,3,99] and k = 2
Output: [3,99,-1,-100]
Explanation:
rotate 1 steps to the right: [99,-1,-100,3]
rotate 2 steps to the right: [3,99,-1,-100]

Note:
Try to come up as many solutions as you can, there are at least 3 different ways to solve this problem.
Could you do it in-place with O(1) extra space?

O(n) space:

class Solution:
    def rotate(self, nums: List[int], k: int) -> None:
        n = len(nums)
        original = nums[:]
        for i in range(n):
            nums[(i + k) % n] = original[i]

O(1) space:

class Solution:
    def rotate(self, nums: List[int], k: int) -> None:
        k = k % len(nums)
        if k == 0 or len(nums) == 1:
            return
        nums.reverse()
        self.reverse(nums, 0, k - 1)
        self.reverse(nums, k, len(nums) - 1)
    def reverse(self, nums, s, e):
        while s < e:
            nums[s], nums[e] = nums[e], nums[s]
            s += 1
            e -= 1

面经:维萨. 向右走2:--->--> to -->---> 或者向左走2:<--<--- to <---<--

296. Best Meeting Point (Hard) 带锁

LinC 912. Best Meeting Point
A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.

Example 1:
Input:
[[1,0,0,0,1],[0,0,0,0,0],[0,0,1,0,0]]
Output:
6
Explanation:
The point (0,2) is an ideal meeting point, as the total travel distance of 2 + 2 + 2 = 6 is minimal. So return 6.

Example 2:
Input:
[[1,1,0,0,1],[1,0,1,0,0],[0,0,1,0,1]]
Output:
14

class Solution:
    def minTotalDistance(self, grid):
        rows, cols = [], []
        for r in range(len(grid)):
            for c in range(len(grid[0])):
                if grid[r][c] == 1:
                    rows.append(r)
                    cols.append(c)
        rows.sort()
        cols.sort()
        ans = 0
        i, j = 0, len(rows) - 1
        while i < j:
            ans += rows[j] - rows[i] + cols[j] - cols[i]
            i += 1
            j -= 1
        return ans

面经:维萨。关键是知道将行和列排序,然后从两边算距离的方法。

238. Product of Array Except Self (Medium)

Given an array nums of n integers where n > 1, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].

Example:
Input: [1,2,3,4]
Output: [24,12,8,6]
Note: Please solve it without division and in O(n).

Follow up:
Could you solve it with constant space complexity? (The output array does not count as extra space for the purpose of space complexity analysis.)

class Solution:
    def productExceptSelf(self, nums: List[int]) -> List[int]:
        n = len(nums)
        ans = [1] * n
        for i in range(1, n):
            ans[i] = nums[i - 1] * ans[i - 1]
        cur = 1
        for i in range(n - 1, 0, -1):
            cur *= nums[i]
            ans[i - 1] *= cur
        return ans

Blind 75; 高频; 面经:Amazon。从左到右, 最右边已经是正确答案了,再开一个初始值为1的变量从右到左乘进ans当前元素后把nums当前元素乘进此变量里这个方法

Sliding Window 滑动窗口

438. Find All Anagrams in a String (Medium)

Given a string s and a non-empty string p, find all the start indices of p's anagrams in s.
Strings consists of lowercase English letters only and the length of both strings s and p will not be larger than 20,100.
The order of output does not matter.

Example 1:
Input:
s: "cbaebabacd" p: "abc"
Output:
[0, 6]
Explanation:
The substring with start index = 0 is "cba", which is an anagram of "abc".
The substring with start index = 6 is "bac", which is an anagram of "abc".

Example 2:
Input:
s: "abab" p: "ab"
Output:
[0, 1, 2]
Explanation:
The substring with start index = 0 is "ab", which is an anagram of "ab".
The substring with start index = 1 is "ba", which is an anagram of "ab".
The substring with start index = 2 is "ab", which is an anagram of "ab".

class Solution:
    def findAnagrams(self, s: str, p: str) -> List[int]:
        pc = Counter(p)
        cnt = len(pc)
        n = len(p)
        ans = []
        i = j = 0
        while j < len(s):
            if s[j] in pc:
                pc[s[j]] -= 1
                if pc[s[j]] == 0:
                    cnt -= 1
            j += 1
            while cnt == 0:
                if s[i] in pc:
                    pc[s[i]] += 1
                    if pc[s[i]] == 1:
                        cnt += 1
                if j - i == n:
                    ans.append(i)
                i += 1
        return ans

写法2:

class Solution:
    def findAnagrams(self, s: str, p: str) -> List[int]:
        pc = Counter(p)
        sc = Counter()
        n = len(p)
        ans = []
        for i in range(len(s)):
            if i > n - 1:
                sc[s[i - n]] -= 1
                if sc[s[i - n]] == 0:
                    del sc[s[i - n]]
            sc[s[i]] += 1
            if sc == pc:
                ans.append(i - n + 1)
        return ans

2刷:面经:Amazon

3. Longest Substring Without Repeating Characters (Medium)

Given a string, find the length of the longest substring without repeating characters.

Example 1:
Input: "abcabcbb"
Output: 3
Explanation: The answer is "abc", with the length of 3.

Example 2:
Input: "bbbbb"
Output: 1
Explanation: The answer is "b", with the length of 1.

Example 3:
Input: "pwwkew"
Output: 3
Explanation: The answer is "wke", with the length of 3.
Note that the answer must be a substring, "pwke" is a subsequence and not a substring.

class Solution:
    def lengthOfLongestSubstring(self, s: str) -> int:
        counter = Counter()
        l = 0
        ans = 0
        for r in range(len(s)):
            counter[s[r]] += 1
            while counter[s[r]] > 1:
                counter[s[l]] -= 1
                l += 1
            ans = max(ans, r - l + 1)
        return ans

Blind 75; 面经,Amazon

76. Minimum Window Substring (Hard)

Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).

Example:
Input: S = "ADOBECODEBANC", T = "ABC"
Output: "BANC"

Note:
If there is no such window in S that covers all characters in T, return the empty string "".
If there is such window, you are guaranteed that there will always be only one unique minimum window in S.

class Solution:
    def minWindow(self, s: str, t: str) -> str:
        target = Counter(t)
        window = Counter()
        need = len(target)
        have = 0
        l = 0
        ans = ''
        for r, c in enumerate(s):
            window[c] += 1
            if window[c] == target[c]:
                have += 1
                while need == have:
                    if not ans or len(ans) > r - l + 1:
                        ans = s[l:r + 1]
                    window[s[l]] -= 1
                    if window[s[l]] < target[s[l]]:
                        have -= 1
                    l += 1
        return ans

写法2

class Solution:
    def minWindow(self, s: str, t: str) -> str:
        if len(s) < len(t):
            return ''
        counter = Counter(t)
        need = len(counter)
        have = 0
        l = 0
        ans = ''
        for r in range(len(s)):
            c = s[r]
            if c in counter:
                counter[c] -= 1
                if counter[c] == 0:
                    have += 1
                    while have == need and l <= r:
                        if not ans or len(ans) > r - l + 1:
                            ans = s[l:r + 1]
                        if s[l] in counter:
                            counter[s[l]] += 1
                            if counter[s[l]] > 0:
                                have -= 1
                        l += 1
        return ans

Blind 75; 面经: Amazon

209. Minimum Size Subarray Sum (Medium)

Given an array of positive integers nums and a positive integer target, return the minimal length of a contiguous subarray [numsl, numsl+1, ..., numsr-1, numsr] of which the sum is greater than or equal to target. If there is no such subarray, return 0 instead.

Example 1:
Input: target = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: The subarray [4,3] has the minimal length under the problem constraint.

Example 2:
Input: target = 4, nums = [1,4,4]
Output: 1

Example 3:
Input: target = 11, nums = [1,1,1,1,1,1,1,1]
Output: 0

Constraints:
1 <= target <= 109
1 <= nums.length <= 105
1 <= nums[i] <= 105

Follow up: If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log(n)).

class Solution:
    def minSubArrayLen(self, target: int, nums: List[int]) -> int:
        i = j = sum_ = 0
        min_ = float('inf')
        while j < len(nums):
            sum_ += nums[j]
            while sum_ >= target:
                min_ = min(min_, j - i + 1)
                sum_ -= nums[i]
                i += 1
            j += 1
        return min_ if min_ < float('inf') else 0

高频

1151 Minimum Swaps to Group All 1's Together (Medium) 带锁

geeks for geeks article
Given an array of 0’s and 1’s, we need to write a program to find the minimum number of swaps required to group all 1’s present in the array together.

Examples:
Input : arr[] = {1, 0, 1, 0, 1}
Output : 1
Explanation: Only 1 swap is required to
group all 1's together. Swapping index 1
and 4 will give arr[] =

Input : arr[] = {1, 0, 1, 0, 1, 1}
Output : 1

def minSwaps(arr):
    from collections import Counter
    counter = Counter(arr)
    targetLen = counter[1]
    counter = Counter(arr[0:targetLen])
    most1s = counter[1]
    for i in range(1, len(arr) - targetLen + 1):
        #because I already know how many 1s in previous subarray. Just add or subtract as I go
        if boxes[i - 1] == 1:
            counter[1] -= 1
        if boxes[i + targetLen - 1] == 1:
            counter[1] += 1
        if counter[1] > most1s:
            most1s = counter[1]
    return targetLen - most1s

面经:Celo。算法的核心是:find the subarray of counter[1] length that has the most 1's. Then just move the 1's from elsewhere to fill the 0's in this subarray

1004. Max Consecutive Ones III medium

Given an array A of 0s and 1s, we may change up to K values from 0 to 1.
Return the length of the longest (contiguous) subarray that contains only 1s.

Example 1:
Input: A = [1,1,1,0,0,0,1,1,1,1,0], K = 2
Output: 6
Explanation:
[1,1,1,0,0,1,1,1,1,1,1]
Bolded numbers were flipped from 0 to 1. The longest subarray is underlined.

Example 2:
Input: A = [0,0,1,1,0,0,1,1,1,0,1,1,0,0,0,1,1,1,1], K = 3
Output: 10
Explanation:
[0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1]
Bolded numbers were flipped from 0 to 1. The longest subarray is underlined.

Note:
1 <= A.length <= 20000
0 <= K <= A.length
A[i] is 0 or 1

class Solution:
    def longestOnes(self, A: List[int], K: int) -> int:
        l = 0
        for r in range(len(A)):
            K -= 1 - A[r]
            if K < 0:
                K += 1 - A[l]
                l += 1
        return r - l + 1

一刷:Facebook tag

424. Longest Repeating Character Replacement (Medium)

You are given a string s and an integer k. You can choose any character of the string and change it to any other uppercase English character. You can perform this operation at most k times.

Return the length of the longest substring containing the same letter you can get after performing the above operations.

Example 1:
Input: s = "ABAB", k = 2
Output: 4
Explanation: Replace the two 'A's with two 'B's or vice versa.

Example 2:
Input: s = "AABABBA", k = 1
Output: 4
Explanation: Replace the one 'A' in the middle with 'B' and form "AABBBBA".
The substring "BBBB" has the longest repeating letters, which is 4.
There may exists other ways to achieve this answer too.
 
Constraints:
1 <= s.length <= 105
s consists of only uppercase English letters.
0 <= k <= s.length
class Solution:
    def characterReplacement(self, s: str, k: int) -> int:
        counter = Counter()
        l, ans, max_freq = 0, 0, 0
        for r in range(len(s)):
            counter[s[r]] += 1
            max_freq = max(max_freq, counter[s[r]])
            if r - l + 1 - max_freq > k:
                counter[s[l]] -= 1
                l += 1
            ans = max(ans, r - l + 1)
        return ans

Blind 75

Linked List 链表

83. Remove Duplicates from Sorted List (Easy)

Given a sorted linked list, delete all duplicates such that each element appear only once.

Example 1:
Input: 1->1->2
Output: 1->2

Example 2:
Input: 1->1->2->3->3
Output: 1->2->3

高频

class Solution:
    def deleteDuplicates(self, head: ListNode) -> ListNode:
        cur = head
        while cur and cur.next:
            if cur.val == cur.next.val:
                cur.next = cur.next.next
            else:
                cur = cur.next
        return head

总结:...temp = head; while temp and temp.next: ...temp.next = temp.next.next; else: temp = temp.next...

82. Remove Duplicates from Sorted List II (Medium)

Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.

Example 1:
Input: 1->2->3->3->4->4->5
Output: 1->2->5

Example 2:
Input: 1->1->1->2->3
Output: 2->3

高频

class Solution:
    def deleteDuplicates(self, head: ListNode) -> ListNode:
        dummy = cur = ListNode(0)
        dummy.next = head
        while cur:
            has_dupe = False
            while cur.next and cur.next.next and cur.next.val == cur.next.next.val:
                cur.next = cur.next.next
                has_dupe = True
            if has_dupe:
                cur.next = cur.next.next
            else:
                cur = cur.next
        return dummy.next

高频:...cur = dummy...has_dupe = False...cur.next = cur.next.next...

21. Merge Two Sorted Lists (Easy)

Merge two sorted linked lists and return it as a new list. The new list should be made by splicing together the nodes of the first two lists.

Example:
Input: 1->2->4, 1->3->4
Output: 1->1->2->3->4->4

class Solution:
    def mergeTwoLists(self, list1: Optional[ListNode], list2: Optional[ListNode]) -> Optional[ListNode]:
        dummy = p = ListNode()
        while list1 and list2:
            if list1.val < list2.val:
                p.next = list1
                list1 = list1.next
            else:
                p.next = list2
                list2 = list2.next
            p = p.next
        p.next = list1 or list2
        return dummy.next

Blind 75; 高频; 面经:Cruise

19. Remove Nth Node From End of List (Medium)

Given a linked list, remove the n-th node from the end of list and return its head.

Example:
Given linked list: 1->2->3->4->5, and n = 2.
After removing the second node from the end, the linked list becomes 1->2->3->5.

Note:
Given n will always be valid.

Follow up:
Could you do this in one pass?

1 pass:

class Solution:
    def removeNthFromEnd(self, head: Optional[ListNode], n: int) -> Optional[ListNode]:
        dummy = s = f = ListNode()
        dummy.next = head
        for _ in range(n):
            f = f.next
        while f.next:
            s = s.next
            f = f.next
        s.next = s.next.next
        return dummy.next

2 passes:

class Solution:
    def removeNthFromEnd(self, head: Optional[ListNode], n: int) -> Optional[ListNode]:
        cnt = 0
        p = head
        while p:
            cnt += 1
            p = p.next
        dummy = p = ListNode()
        dummy.next = head
        for _ in range(cnt - n):
            p = p.next
        p.next = p.next.next
        return dummy.next

Blind 75; 高频

2. Add Two Numbers (Medium)

You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order and each of their nodes contain a single digit. Add the two numbers and return it as a linked list.

You may assume the two numbers do not contain any leading zero, except the number 0 itself.

Example:

Input: (2 -> 4 -> 3) + (5 -> 6 -> 4)
Output: 7 -> 0 -> 8
Explanation: 342 + 465 = 807.

高频

写法1:

class Solution:
    def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]:
        carry = 0
        ans = prev = None
        while l1 or l2:
            if l1 and l2:
                d = l1.val + l2.val + carry
                l1 = l1.next
                l2 = l2.next
            elif l1:
                d = l1.val + carry
                l1 = l1.next
            else:
                d = l2.val + carry
                l2 = l2.next
            carry = 0 if d < 10 else 1
            cur = ListNode(d % 10)
            if not ans:
                ans = prev = cur
            else:
                prev.next = cur
                prev = cur
        if carry:
            prev.next = ListNode(1)
        return ans

写法2:

class Solution:
    def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]:
        def l2n(n):
            res = ''
            while n:
                res = str(n.val) + res
                n = n.next
            return int(res)
        def n2l(n):
            head = None
            n = str(n)
            for d in n:
                cur = ListNode(d)
                if not head:
                    head = cur
                else:
                    tmp = head
                    head = cur
                    cur.next = tmp
            return head
        return n2l(l2n(l1) + l2n(l2))

写法3:

        def l2n(n):
            res, d = 0, 0
            while n:
                res += n.val * (10 ** d)
                d += 1
                n = n.next
            return res
        def n2l(n):
            res = prev = None
            if n == 0:
                return ListNode(0)
            while n:
                cur = ListNode(n % 10)
                if not res:
                    res = prev = cur
                else:
                    prev.next = cur
                    prev = cur
                n //= 10
            return res
        return n2l(l2n(l1) + l2n(l2))

2刷:总结:写l2n和n2l两个函数

445. Add Two Numbers II (Medium)

You are given two non-empty linked lists representing two non-negative integers. The most significant digit comes first and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.

You may assume the two numbers do not contain any leading zero, except the number 0 itself.

Example 1:
445 Example 1 image
Input: l1 = [7,2,4,3], l2 = [5,6,4]
Output: [7,8,0,7]

Example 2:
Input: l1 = [2,4,3], l2 = [5,6,4]
Output: [8,0,7]

Example 3:
Input: l1 = [0], l2 = [0]
Output: [0]

Constraints:
The number of nodes in each linked list is in the range [1, 100].
0 <= Node.val <= 9
It is guaranteed that the list represents a number that does not have leading zeros.

Follow up: Could you solve it without reversing the input lists?

# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, val=0, next=None):
#         self.val = val
#         self.next = next
class Solution:
    def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]:
        def reverse(l):
            p_h = None
            while l:
                n_h = l.next
                l.next = p_h
                p_h = l
                l = n_h
            return p_h
        def add(a, b, c):
            if not a and not b:
                if c // 10:
                    return ListNode(c % 10, ListNode(c // 10))
                elif c:
                    return ListNode(c % 10)
                else:
                    return 
            if not a or not b:
                s = (a or b).val + c
                t_n = ListNode(s % 10)
                t_n.next = add((a or b).next, None, s // 10)
            if a and b:
                s = a.val + b.val + c
                t_n = ListNode(s % 10)
                t_n.next = add(a.next, b.next, s // 10)
            return t_n
        l1 = reverse(l1)
        l2 = reverse(l2)
        return reverse(add(l1, l2, 0))
            

stack:

class Solution:
    def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]:
        s1, s2 = [], []
        while l1:
            s1.append(l1.val)
            l1 = l1.next
        while l2:
            s2.append(l2.val)
            l2 = l2.next
        p = ListNode(0)
        s = 0
        while s1 or s2:
            if s1:
                s += s1.pop()
            if s2:
                s += s2.pop()
            p.val = s % 10
            t = ListNode(s // 10)
            t.next = p
            p = t
            s //= 10
        return p.next if p.val == 0 else p

高频

86. Partition List (Medium)

Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of the nodes in each of the two partitions.

Example:
Input: head = 1->4->3->2->5->2, x = 3
Output: 1->2->2->4->3->5

class Solution:
    def partition(self, head: ListNode, x: int) -> ListNode:
        loHead = loDummy = ListNode(0)
        hiHead = hiDummy = ListNode(0)
        while head:
            if head.val < x:
                loHead.next = head
                loHead = loHead.next
            else:
                hiHead.next = head
                hiHead = hiHead.next
            head = head.next
        loHead.next = hiDummy.next
        hiHead.next = None
        return loDummy.next

高频, 五刷:两个dummy,两个worker

141. Linked List Cycle (Easy)

Given a linked list, determine if it has a cycle in it.
To represent a cycle in the given linked list, we use an integer pos which represents the position (0-indexed) in the linked list where tail connects to. If pos is -1, then there is no cycle in the linked list.

Example 1:
Input: head = [3,2,0,-4], pos = 1
Output: true
Explanation: There is a cycle in the linked list, where tail connects to the second node.
Linked List Cycle example1

Example 2:
Input: head = [1,2], pos = 0
Output: true
Explanation: There is a cycle in the linked list, where tail connects to the first node.
Linked List Cycle example2

Example 3:
Input: head = [1], pos = -1
Output: false
Explanation: There is no cycle in the linked list.
Linked List Cycle example3

Follow up:
Can you solve it without using extra space?

O(n) space:

class Solution(object):
    def hasCycle(self, head):
        seen = set()
        while head:
            if head in seen:
                return True
            seen.add(head)
            head = head.next
        return False

Constant space:

class Solution(object):
    def hasCycle(self, head):
        if not head:
            return False
        s = f = head
        while f.next and f.next.next:
            s = s.next
            f = f.next.next
            if s == f:
                return True
        return False

Blind 75,面经:维萨

142. Linked List Cycle II (Medium)

Given a linked list, return the node where the cycle begins. If there is no cycle, return null.
To represent a cycle in the given linked list, we use an integer pos which represents the position (0-indexed) in the linked list where tail connects to. If pos is -1, then there is no cycle in the linked list.
Note: Do not modify the linked list.

Example 1:
Input: head = [3,2,0,-4], pos = 1
Output: tail connects to node index 1
Explanation: There is a cycle in the linked list, where tail connects to the second node.
Linked List Cycle II example1

Example 2:
Input: head = [1,2], pos = 0
Output: tail connects to node index 0
Explanation: There is a cycle in the linked list, where tail connects to the first node.
Linked List Cycle II example2

Example 3:
Input: head = [1], pos = -1
Output: no cycle
Explanation: There is no cycle in the linked list.
Linked List Cycle II example3

class Solution(object):
    def detectCycle(self, head):
        if not head or not head.next:
            return
        s = f = head
        loop = False
        while f.next and f.next.next:
            s = s.next
            f = f.next.next
            if s == f:
                loop = True
                break
        if not loop:
            return
        s = head
        while s != f:
            s = s.next
            f = f.next
        return s

面经:维萨。关键知识点是1.相遇点是慢指针在环里的 第一圈。是快指针在环里的第n圈。2. 慢指针走了x+y, 快指针走了 2(x + y) 3. 快指针这个 距离又等同于 x + y + nr 4. x = nr - y 4. 由下图可见, nr - y = z 5. z 和 x 是相等的。 6. 因此可以head与快或慢同时前进,相遇即是B点。

    x            y
A ------ B --------+
         |         |
       z |         |
         +----C----+
* 环的长度为 r
* C: 快慢指针相遇点

206. Reverse Linked List (Easy)

Reverse a singly linked list.

Example:
Input: 1->2->3->4->5->NULL
Output: 5->4->3->2->1->NULL

Follow up:
A linked list can be reversed either iteratively or recursively. Could you implement both?

遍历:

class Solution:
    def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]:
        prev = None
        while head:
            saved_next = head.next
            head.next = prev
            prev = head
            head = saved_next
        return prev

递归1:

class Solution:
    def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]:
        def helper(head, prev):
            if not head:
                return prev
            saved_next = head.next
            head.next = prev
            return helper(saved_next, head)
        return helper(head, None)

递归2:

class Solution:
    def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]:
        if not head or not head.next:
            return head
        saved_head = self.reverseList(head.next)
        head.next.next = head
        head.next = None
        return saved_head

Blind 75; 高频, 增加了这个油管视频的递归方法。savedListHead是存着的call stack最底下的head, 然后层层传回去

92. Reverse Linked List II (Medium)

Reverse a linked list from position m to n. Do it in one-pass.
Note: 1 ≤ m ≤ n ≤ length of list.

Example:
Input: 1->2->3->4->5->NULL, m = 2, n = 4
Output: 1->4->3->2->5->NULL

class Solution:
    def reverseBetween(self, head: ListNode, m: int, n: int) -> ListNode:
        pre = dummy = ListNode(0)
        dummy.next = head
        i = 0
        while i < m - 1:
            pre = pre.next
            head = head.next
            i += 1
        first = p = head
        head = head.next
        while i < n - 1:
            t = head.next
            head.next = p
            p = head
            head = t
            i += 1
        pre.next = p
        first.next = head
        return dummy.next

3刷:高频

160. Intersection of Two Linked Lists (Easy)

Write a program to find the node at which the intersection of two singly linked lists begins.
For example, the following two linked lists:

A:          a1 → a2
                   ↘
                     c1 → c2 → c3
                   ↗
B:     b1 → b2 → b3

begin to intersect at node c1.

Notes:
If the two linked lists have no intersection at all, return null.
The linked lists must retain their original structure after the function returns.
You may assume there are no cycles anywhere in the entire linked structure.
Your code should preferably run in O(n) time and use only O(1) memory.

class Solution:
    def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> ListNode:
        pa, pb = headA, headB
        la = lb = 0
        while pa or pb:
            if pa:
                pa = pa.next
                la += 1
            if pb:
                pb = pb.next
                lb += 1
        if la > lb:
            p1, p2 = headA, headB
        else:
            p1, p2 = headB, headA
        for _ in range(abs(la - lb)):
            p1 = p1.next
        while p1 != p2:
            p1 = p1.next
            p2 = p2.next
        return p1

2刷:思路:统计两条链走到头的长度,lenA 和 lenB, 然后让长的那条先走两者的差值,然后一起走,返回相遇的那点

24. Swap Nodes in Pairs (Medium)

Given a linked list, swap every two adjacent nodes and return its head.
You may not modify the values in the list's nodes, only nodes itself may be changed.

Example:
Given 1->2->3->4, you should return the list as 2->1->4->3.

高频

class Solution:
    def swapPairs(self, head: ListNode) -> ListNode:
        dummy = cur = ListNode(0)
        while head and head.next:
            a, b = head, head.next
            head = b.next
            cur.next = b
            b.next = a
            cur = a
            cur.next = None
        if head:
            cur.next = head
        return dummy.next

递归

class Solution:
    def swapPairs(self, head: ListNode) -> ListNode:
        if not head or not head.next:
            return head
        neighbor = head.next
        frontier = neighbor.next
        neighbor.next = head
        head.next = self.swapPairs(frontier)
        return neighbor

总结:a, b, 挪head,连接 cur.next,b的next到a,挪cur到a,切掉cur->。todo:理解递归答案

61. Rotate List (Medium)

Given a linked list, rotate the list to the right by k places, where k is non-negative.

Example 1:
Input: 1->2->3->4->5->NULL, k = 2
Output: 4->5->1->2->3->NULL
Explanation:
rotate 1 steps to the right: 5->1->2->3->4->NULL
rotate 2 steps to the right: 4->5->1->2->3->NULL

Example 2:
Input: 0->1->2->NULL, k = 4
Output: 2->0->1->NULL
Explanation:
rotate 1 steps to the right: 2->0->1->NULL
rotate 2 steps to the right: 1->2->0->NULL
rotate 3 steps to the right: 0->1->2->NULL
rotate 4 steps to the right: 2->0->1->NULL

高频

class Solution:
    def rotateRight(self, head: ListNode, k: int) -> ListNode:
        if not head:
            return head
        dummy = ListNode(0)
        dummy.next = head
        f = dummy
        l = 0
        while f and f.next:
            f = f.next
            l += 1
        s = dummy
        k %= l
        for _ in range(l - k):
            s = s.next
        f.next = dummy.next
        dummy.next = s.next
        s.next = None
        return dummy.next

高频,二刷:链长l,k %= l, 将第l - k位置的以后的放链表前面:s走l - k步,f.next接到dummy.next上,dummy.next接到s.next; s.next = None

146. LRU Cache (Medium)

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
The cache is initialized with a positive capacity.

Follow up:
Could you do both operations in O(1) time complexity?

Example:
LRUCache cache = new LRUCache( 2 /* capacity */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1);       // returns 1
cache.put(3, 3);    // evicts key 2
cache.get(2);       // returns -1 (not found)
cache.put(4, 4);    // evicts key 1
cache.get(1);       // returns -1 (not found)
cache.get(3);       // returns 3
cache.get(4);       // returns 4
class LRUCache:
    def __init__(self, capacity: int):
        self.cap = capacity
        self.od = OrderedDict()

    def get(self, key: int) -> int:
        if key not in self.od:
            return -1
        v = self.od.pop(key)
        self.od[key] = v
        return v         

    def put(self, key: int, value: int) -> None:
        if key in self.od:
            del self.od[key]
        elif len(self.od) == self.cap:
            self.od.popitem(last = False)
        self.od[key] = value

面试写法:

class Node:
    def __init__(self, k = 0, v = 0):
        self.k, self.v = k, v
        self.prev = self.next = None

class LRUCache:

    def __init__(self, capacity: int):
        self.d = {}
        self.cap = capacity
        self.l, self.r = Node(), Node()
        self.l.next, self.r.prev = self.r, self.l

    def get(self, key: int) -> int:
        if key not in self.d:
            return -1
        node = self.d[key]
        self.__remove(node)
        self.__append(node)
        return node.v

    def put(self, key: int, value: int) -> None:
        if key in self.d:
            self.__remove(self.d[key])
        elif len(self.d) == self.cap:
            del self.d[self.l.next.k]
            self.__remove(self.l.next)
        node = Node(key, value)
        self.d[key] = node
        self.__append(node)
    
    def __remove(self, node):
        node.prev.next = node.next
        node.next.prev = node.prev
        node.prev = node.next = None

    def __append(self, node):
        self.r.prev.next = node
        node.prev = self.r.prev
        node.next = self.r
        self.r.prev = node

高频

234. Palindrome Linked List (Easy)

Given a singly linked list, determine if it is a palindrome.

Example 1:

Input: 1->2
Output: false
Example 2:

Input: 1->2->2->1
Output: true
Follow up:
Could you do it in O(n) time and O(1) space?
class Solution:
    def isPalindrome(self, head: ListNode) -> bool:
        f = s = head
        pre_h = None
        while f and f.next:
            f = f.next.next
            next_h = s.next
            s.next = pre_h
            pre_h = s
            s = next_h
        if f:
            s = s.next
        while pre_h and pre_h.val == s.val:
            pre_h = pre_h.next
            s = s.next
        return not pre_h

3刷:高频, 慢指针边走边反转,当链表是奇数个时需要s跳过中间节点再s,pre_h同时前进:...if f: s = s.next...

143. Reorder List (Medium)

You are given the head of a singly linked-list. The list can be represented as:
L0 → L1 → … → Ln - 1 → Ln
Reorder the list to be on the following form:
L0 → Ln → L1 → Ln - 1 → L2 → Ln - 2 → …
You may not modify the values in the list's nodes. Only nodes themselves may be changed.

Example 1:
Example 1 image
Input: head = [1,2,3,4]
Output: [1,4,2,3]
Example 2:
Example 1 image
Input: head = [1,2,3,4,5]
Output: [1,5,2,4,3]

class Solution:
    def reorderList(self, head: Optional[ListNode]) -> None:
        dummy = ListNode()
        dummy.next = head
        s = f = dummy
        while f and f.next:
            s = s.next
            f = f.next.next
        p = s.next
        s.next = None
        pre = None
        while p:
            saved_next = p.next
            p.next = pre
            pre = p
            p = saved_next
        head2 = pre
        p = dummy
        while head and head2:
            p.next = head
            p = p.next
            head = head.next
            p.next = head2
            p = p.next
            head2 = head2.next
        p.next = head or head2

Blind 75

Stack 栈

20. Valid Parentheses (Easy)

Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the input string is valid.

An input string is valid if:

Open brackets must be closed by the same type of brackets.
Open brackets must be closed in the correct order.
Note that an empty string is also considered valid.

Example 1:

Input: "()"
Output: true
Example 2:

Input: "()[]{}"
Output: true
Example 3:

Input: "(]"
Output: false
Example 4:

Input: "([)]"
Output: false
Example 5:

Input: "{[]}"
Output: true
class Solution:
    def isValid(self, s: str) -> bool:
        stack = []
        d = {')': '(', '}': '{', ']': '['}
        for c in s:
            if c in d and stack and stack[-1] == d[c]:
                stack.pop()
            else:
                stack.append(c)
        return len(stack) == 0

Blind 75; 高频

71. Simplify Path (Medium)

Given an absolute path for a file (Unix-style), simplify it. Or in other words, convert it to the canonical path.

In a UNIX-style file system, a period . refers to the current directory. Furthermore, a double period .. moves the directory up a level. For more information, see: Absolute path vs relative path in Linux/Unix

Note that the returned canonical path must always begin with a slash /, and there must be only a single slash / between two directory names. The last directory name (if it exists) must not end with a trailing /. Also, the canonical path must be the shortest string representing the absolute path.

Example 1:

Input: "/home/"
Output: "/home"
Explanation: Note that there is no trailing slash after the last directory name.
Example 2:

Input: "/../"
Output: "/"
Explanation: Going one level up from the root directory is a no-op, as the root level is the highest level you can go.
Example 3:

Input: "/home//foo/"
Output: "/home/foo"
Explanation: In the canonical path, multiple consecutive slashes are replaced by a single one.
Example 4:

Input: "/a/./b/../../c/"
Output: "/c"
Example 5:

Input: "/a/../../b/../c//.//"
Output: "/c"
Example 6:

Input: "/a//b////c/d//././/.."
Output: "/a/b/c"
class Solution:
    def simplifyPath(self, path: str) -> str:
        t = path.split('/')
        s = []
        for p in t:
            if p and p != '.':
                if p == '..':
                    if s:
                        s.pop()
                else:
                    s.append(p)
        if not s:
            return '/'
        else:
            return '/' + '/'.join(s)

高频:注意split('/')是'/'的会变成数组里一个空的元素

150. Evaluate Reverse Polish Notation (Medium)

Evaluate the value of an arithmetic expression in Reverse Polish Notation.

Valid operators are +, -, *, /. Each operand may be an integer or another expression.

Note:

Division between two integers should truncate toward zero.
The given RPN expression is always valid. That means the expression would always evaluate to a result and there won't be any divide by zero operation.
Example 1:

Input: ["2", "1", "+", "3", "*"]
Output: 9
Explanation: ((2 + 1) * 3) = 9
Example 2:

Input: ["4", "13", "5", "/", "+"]
Output: 6
Explanation: (4 + (13 / 5)) = 6
Example 3:

Input: ["10", "6", "9", "3", "+", "-11", "*", "/", "*", "17", "+", "5", "+"]
Output: 22
Explanation:
  ((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
class Solution:
    def evalRPN(self, tokens: List[str]) -> int:
        operators = "+-*/"
        s = []
        for op in tokens:
            if op not in operators:
                s.append(int(op))
            else:
                b = s.pop()
                a = s.pop()
                if op == "+":
                    res = a + b
                elif op == "-":
                    res = a - b
                elif op == '*':
                    res = a * b
                elif op == "/":
                    if a * b < 0 and a % b != 0:
                        res = a // b + 1
                    else:
                        res = a // b
                s.append(res)
        return s[0]

高频:需要注意leetcode里-1//20为0,而python里为-1,-21//20python里为-2。需要单独处理一下

155. Min Stack (Easy)

Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.

push(x) -- Push element x onto stack.
pop() -- Removes the element on top of the stack.
top() -- Get the top element.
getMin() -- Retrieve the minimum element in the stack.


Example:

MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin();   --> Returns -3.
minStack.pop();
minStack.top();      --> Returns 0.
minStack.getMin();   --> Returns -2.
class MinStack:

    def __init__(self):
        self.a = []

    def push(self, val: int) -> None:
        if not self.a:
            self.a.append((val, val))
        else:
            self.a.append((val, min(self.a[-1][1], val)))

    def pop(self) -> None:
        self.a.pop()

    def top(self) -> int:
        return self.a[-1][0]

    def getMin(self) -> int:
        return self.a[-1][1]

2刷:高频:一个stack就用tuple,两个stack就相当于第二个stack来维持curMin

224. Basic Calculator (Hard)

Implement a basic calculator to evaluate a simple expression string.
The expression string may contain open ( and closing parentheses ), the plus + or minus sign -, non-negative integers and empty spaces .

Example 1:
Input: "1 + 1"
Output: 2
Example 2:

Input: " 2-1 + 2 "
Output: 3
Example 3:

Input: "(1+(4+5+2)-3)+(6+8)"
Output: 23
Note:
You may assume that the given expression is always valid.
Do not use the eval built-in library function.

class Solution:
    def calculate(self, s: str) -> int:
        num, ans = 0, 0
        sign = 1
        stack = []
        for c in s:
            if c.isdigit():
                num = num * 10 + int(c)
            elif c in "+-":
                ans += sign * num
                num = 0
                sign = 1 if c == "+" else -1
            elif c == "(":
                stack.append(ans)
                stack.append(sign)
                ans = 0
                sign = 1
            elif c == ")":
                ans += sign * num
                ans *= stack.pop()
                ans += stack.pop()
                num = 0
        return ans + sign * num

面经:Cruise ...num = 0...ans = 0; sign = 1...num = 0...

227. Basic Calculator II (Medium)

Implement a basic calculator to evaluate a simple expression string.
The expression string contains only non-negative integers, +, -, * , / operators and empty spaces . The integer division should truncate toward zero.

Example 1:
Input: "3+2*2"
Output: 7
Example 2:

Input: " 3/2 "
Output: 1
Example 3:

Input: " 3+5 / 2 "
Output: 5

Note:
You may assume that the given expression is always valid.
Do not use the eval built-in library function.

O(n) 空间:

class Solution:
    def calculate(self, s: str) -> int:
        res, pre_op, cur = [], '+', 0
        for c in s + '+':
            if c in '+-*/':
                if pre_op == '+':
                    res.append(cur)
                elif pre_op == '-':
                    res.append(-cur)                  
                elif pre_op == '*':
                    res[-1] *= cur
                elif pre_op == '/':
                    res[-1] = int(res[-1] / cur)
                cur = 0
                pre_op = c
            elif c != ' ':
                cur = cur * 10 + int(c)
        return sum(res)

O(1)空间:

class Solution:
    def calculate(self, s: str) -> int:
        res, pre_op, cur, pre = 0, '+', 0, 0
        for c in s + '+':
            if c in '+-*/':
                if pre_op == '+':
                    res += pre
                elif pre_op == '-':
                    res += pre
                    cur = -cur
                elif pre_op == '*':
                    cur = pre * cur
                elif pre_op == '/':
                    cur = int(pre / cur)
                pre = cur
                cur = 0
                pre_op = c
            elif c != ' ':
                cur = cur * 10 + int(c)
        return res + pre

8刷: 面经:Cruise。难点:
1:pre_op = '+';
2. ...in s + '+': 给s加一个'+'尾巴处理最后一个运算符
3. -3 // 2 == -2 因为python是floor division返回less or equal to the closest integer比-1.5 less的integer是-2,所以要用int(../..)这样来除才能得到整数位的
4:O(n)空间的写法是要有一个pre的变量记录前一位的结果,如果前一个运算符是加减,则将pre加入res,最后返回res + pre

739. Daily Temperatures (Medium)

Given an array of integers temperatures represents the daily temperatures, return an array answer such that answer[i] is the number of days you have to wait after the ith day to get a warmer temperature. If there is no future day for which this is possible, keep answer[i] == 0 instead.

Example 1:
Input: temperatures = [73,74,75,71,69,72,76,73]
Output: [1,1,4,2,1,1,0,0]

Example 2:
Input: temperatures = [30,40,50,60]
Output: [1,1,1,0]

Example 3:
Input: temperatures = [30,60,90]
Output: [1,1,0]

Constraints:
1 <= temperatures.length <= 105
30 <= temperatures[i] <= 100

暴力 TLE:

class Solution:
    def dailyTemperatures(self, T: List[int]) -> List[int]:
        n = len(T)
        ans = [0] * n
        for i in range(n):
            for j in range(i + 1, n):
                if T[j] > T[i]:
                    ans[i] = j - i
                    break
        return ans

stack:

class Solution:
    def dailyTemperatures(self, temperatures: List[int]) -> List[int]:
        n = len(temperatures)
        ans = [0] * n
        stack = [n - 1]
        for i in range(n - 2, -1, -1):
            while stack and temperatures[i] >= temperatures[stack[-1]]:
                stack.pop()
            if stack:
                ans[i] = stack[-1] - i
            stack.append(i)
        return anss

3刷:高频

394. Decode String (Medium)

Given an encoded string, return its decoded string.

The encoding rule is: k[encoded_string], where the encoded_string inside the square brackets is being repeated exactly k times. Note that k is guaranteed to be a positive integer.

You may assume that the input string is always valid; No extra white spaces, square brackets are well-formed, etc.

Furthermore, you may assume that the original data does not contain any digits and that digits are only for those repeat numbers, k. For example, there won't be input like 3a or 2[4].

Example 1:
Input: s = "3[a]2[bc]"
Output: "aaabcbc"

Example 2:
Input: s = "3[a2[c]]"
Output: "accaccacc"

Example 3:
Input: s = "2[abc]3[cd]ef"
Output: "abcabccdcdcdef"

Example 4:
Input: s = "abc3[cd]xyz"
Output: "abccdcdcdxyz"

Constraints:
1 <= s.length <= 30
s consists of lowercase English letters, digits, and square brackets '[]'.
s is guaranteed to be a valid input.
All the integers in s are in the range [1, 300].
class Solution:
    def decodeString(self, s: str) -> str:
        stack = []
        ans = ""
        k = 0
        for c in s:
            if c == "[":
                stack.append((ans, k))
                ans = ""
                k = 0
            elif c == "]":
                prev_w, prev_k = stack.pop()
                ans = prev_w + ans * prev_k
            elif c.isdigit():
                k = k * 10 + int(c)
            else:
                ans += c
        return ans

写法2:

class Solution:
    def decodeString(self, s: str) -> str:
        stack = []
        for c in s:
            if c != ']':
                stack.append(c)
            else:
                w = deque()
                while stack[-1] != '[':
                    w.appendleft(stack.pop())
                stack.pop()
                k = deque()
                while stack and stack[-1].isdigit():
                    k.appendleft(stack.pop())
                stack.append(''.join(w) * int(''.join(k)))
        return ''.join(stack)

2刷:高频

341. Flatten Nested List Iterator (Medium)

You are given a nested list of integers nestedList. Each element is either an integer or a list whose elements may also be integers or other lists. Implement an iterator to flatten it.

Implement the NestedIterator class:

NestedIterator(List<NestedInteger> nestedList) Initializes the iterator with the nested list nestedList.
int next() Returns the next integer in the nested list.
boolean hasNext() Returns true if there are still some integers in the nested list and false otherwise.
Your code will be tested with the following pseudocode:

initialize iterator with nestedList
res = []
while iterator.hasNext()
    append iterator.next() to the end of res
return res
If res matches the expected flattened list, then your code will be judged as correct.

Example 1:
Input: nestedList = [[1,1],2,[1,1]]
Output: [1,1,2,1,1]
Explanation: By calling next repeatedly until hasNext returns false, the order of elements returned by next should be: [1,1,2,1,1].

Example 2:
Input: nestedList = [1,[4,[6]]]
Output: [1,4,6]
Explanation: By calling next repeatedly until hasNext returns false, the order of elements returned by next should be: [1,4,6].
 
Constraints:
1 <= nestedList.length <= 500
The values of the integers in the nested list is in the range [-106, 106].
# """
# This is the interface that allows for creating nested lists.
# You should not implement it, or speculate about its implementation
# """
#class NestedInteger:
#    def isInteger(self) -> bool:
#        """
#        @return True if this NestedInteger holds a single integer, rather than a nested list.
#        """
#
#    def getInteger(self) -> int:
#        """
#        @return the single integer that this NestedInteger holds, if it holds a single integer
#        Return None if this NestedInteger holds a nested list
#        """
#
#    def getList(self) -> [NestedInteger]:
#        """
#        @return the nested list that this NestedInteger holds, if it holds a nested list
#        Return None if this NestedInteger holds a single integer
#        """

class NestedIterator:
    def __init__(self, nestedList: [NestedInteger]):
        self.s = [[nestedList, 0]]
    
    def next(self) -> int:
        nl, i = self.s[-1]
        self.s[-1][1] += 1
        return nl[i].getInteger()
    
    def hasNext(self) -> bool:
        while self.s:
            nl, i = self.s[-1]
            if i < len(l):
                if nl[i].isInteger():
                    return True
                else:
                    self.s[-1][1] += 1
                    self.s.append([nl[i].getList(), 0])
            else:
                self.s.pop()
        return False

# Your NestedIterator object will be instantiated and called as such:
# i, v = NestedIterator(nestedList), []
# while i.hasNext(): v.append(i.next())

用Generator

class NestedIterator:
    def __init__(self, nestedList: [NestedInteger]):
        def gen(nl):
            for it in nl:
                if it.isInteger():
                    yield it.getInteger()
                else:
                    yield from gen(it.getList())
                    
        self.g = gen(nestedList)
    
    def next(self) -> int:
        return self.next_v
    
    def hasNext(self) -> bool:
        try:
            self.next_v = next(self.g)
            return True
        except StopIteration:
            return False

高频

636. Exclusive Time of Functions (Medium)

描述有点长,题干可以点以上链接阅读

class Solution:
    def exclusiveTime(self, n: int, logs: List[str]) -> List[int]:
        stack = []
        ans = [0] * n
        prev_t = 0
        for log in logs:
            i, op, t = log.split(":")
            i, t = int(i), int(t)
            if op == "start":
                if stack:
                    ans[stack[-1]] += t - prev_t
                stack.append(i)
                prev_t = t
            else:
                ans[stack.pop()] += t - prev_t + 1
                prev_t = t + 1
        return ans

高频

Queue 队列

LinC 642. Moving Average from Data Stream (Easy)

Given a stream of integers and a window size, calculate the moving average of all integers in the sliding window.

Example
MovingAverage m = new MovingAverage(3);
m.next(1) = 1 // return 1.00000
m.next(10) = (1 + 10) / 2 // return 5.50000
m.next(3) = (1 + 10 + 3) / 3 // return 4.66667
m.next(5) = (10 + 3 + 5) / 3 // return 6.00000

思路:建个 window size 的队列,返回队列的平均值

class MovingAverage:
    q = collections.deque()
    sum = 0
    maxLen = 0
    """
    @param: size: An integer
    """
    def __init__(self, size):
        # do intialization if necessary
        self.maxLen = size
    """
    @param: val: An integer
    @return:
    """
    def next(self, val):
        # write your code here
        self.q.append(val)
        self.sum += val
        if len(self.q) > self.maxLen:
            temp = self.q.popleft()
            self.sum -= temp
        avg = self.sum / len(self.q)
        return avg

# Your MovingAverage object will be instantiated and called as such:
# obj = MovingAverage(size)
# param = obj.next(val)

总结:注意 class 变量要加 self,另外 sum 不要每次都 loop 一遍算, 直接放到 class 变量里,每次只增 and / or 减一次。

Hash 哈希表

290. Word Pattern (Easy)

Given a pattern and a string str, find if str follows the same pattern.

Here follow means a full match, such that there is a bijection between a letter in pattern and a non-empty word in str.

Example 1:

Input: pattern = "abba", str = "dog cat cat dog"
Output: true
Example 2:

Input:pattern = "abba", str = "dog cat cat fish"
Output: false
Example 3:

Input: pattern = "aaaa", str = "dog cat cat dog"
Output: false
Example 4:

Input: pattern = "abba", str = "dog dog dog dog"
Output: false
Notes:
You may assume pattern contains only lowercase letters, and str contains lowercase letters separated by a single space.

思路:关键在于懂得建立 pattern 里每个字母和 str 里每个 word 的映射。

class Solution(object):
    def wordPattern(self, pattern, str):
        """
        :type pattern: str
        :type str: str
        :rtype: bool
        """
        words = str.split(' ')
        if len(words) != len(pattern):
            return False
        mapping = {}
        for i, char in enumerate(pattern):
            if char in mapping:
                if mapping[char] != words[i]:
                    return False
            else:
                if words[i] in mapping.values():
                    return False
                mapping[char] = words[i]
        return True

总结:注意需要用 enumerate, 因为要同时遍历 pattern 和 str. 很好的哈希表热身题。Word Pattern II 的 str 里没有空格了,不能直接 split,难度直接推到 Hard。目前刷题的水平先跳过吧 :(

387. First Unique Character in a String (Easy)

Given a string, find the first non-repeating character in it and return it's index. If it doesn't exist, return -1.

Examples:

s = "leetcode"
return 0.

s = "loveleetcode",
return 2.
Note: You may assume the string contain only lowercase letters.

思路:过两遍,第一遍数出现多少次, 第二遍把第一个为 1 的 index 返回

class Solution(object):
    def firstUniqChar(self, s):
        """
        :type s: str
        :rtype: int
        """
        if len(s) == 0:
            return -1
        if len(s) == 1:
            return 0
        dict = {}
        for char in s:
            if char not in dict:
                dict[char] = 1
            else:
                dict[char] += 1
        for index, char in enumerate(s):
            if dict[char] == 1:
                return index
        return -1

总结:基本题,注意 dict entry 初始化为 1 的情况

409. Longest Palindrome (Easy)

Given a string which consists of lowercase or uppercase letters, find the length of the longest palindromes that can be built with those letters.
This is case sensitive, for example "Aa" is not considered a palindrome here.

Note:
Assume the length of given string will not exceed 1,010.

Example:
Input:
"abccccdd"
Output:
7

Explanation:
One longest palindrome that can be built is "dccaccd", whose length is 7.

class Solution(object):
    def longestPalindrome(self, s):
        """
        :type s: str
        :rtype: int
        """
        ans = 0
        from collections import Counter
        counter = Counter(s)
        for c, v in counter.items():
            if v % 2 == 0 or ans % 2 == 0:
                ans += v
            else:
                ans += v - 1
        return ans

面经:Amazon。去掉了一刷二刷的hashmap和dp解法。就用简单好懂的解法吧

380. Insert Delete GetRandom O(1) (Medium)

Design a data structure that supports all following operations in average O(1) time.

insert(val): Inserts an item val to the set if not already present.
remove(val): Removes an item val from the set if present.
getRandom: Returns a random element from current set of elements. Each element must have the same probability of being returned.
Example:

// Init an empty set.
RandomizedSet randomSet = new RandomizedSet();

// Inserts 1 to the set. Returns true as 1 was inserted successfully.
randomSet.insert(1);

// Returns false as 2 does not exist in the set.
randomSet.remove(2);

// Inserts 2 to the set, returns true. Set now contains [1,2].
randomSet.insert(2);

// getRandom should return either 1 or 2 randomly.
randomSet.getRandom();

// Removes 1 from the set, returns true. Set now contains [2].
randomSet.remove(1);

// 2 was already in the set, so return false.
randomSet.insert(2);

// Since 2 is the only number in the set, getRandom always return 2.
randomSet.getRandom();

思路:看答案知道需要用 list 和 dictionary,因为要满足 O(1), 因为仅有 list 的 in 操作不能满足 O(1)

class RandomizedSet(object):

    def __init__(self):
        """
        Initialize your data structure here.
        """
        self.list = []
        self.dict = {}

    def insert(self, val):
        """
        Inserts a value to the set. Returns true if the set did not already contain the specified element.
        :type val: int
        :rtype: bool
        """
        if val in self.dict:
            return False
        else:
            self.list.append(val)
            self.dict[val] = len(self.list) - 1
            return True

    def remove(self, val):
        """
        Removes a value from the set. Returns true if the set contained the specified element.
        :type val: int
        :rtype: bool
        """
        if val in self.dict:
            index, lastVal = self.dict[val], self.list[len(self.list) - 1]
            self.list[index], self.dict[lastVal] = lastVal, index
            self.list.pop()
            self.dict.pop(val)
            return True
        else:
            return False

    def getRandom(self):
        """
        Get a random element from the set.
        :rtype: int
        """
        return self.list[random.randint(0, len(self.list) - 1)]


# Your RandomizedSet object will be instantiated and called as such:
# obj = RandomizedSet()
# param_1 = obj.insert(val)
# param_2 = obj.remove(val)
# param_3 = obj.getRandom()

总结:可能是用 python 的原因,搞明白问什么了一次过

[LinC 960. First Unique Number in a Stream II (Medium)](960. First Unique Number in a Stream II)

Description
We need to implement a data structure named DataStream. There are two methods required to be implemented:

void add(number) // add a new number
int firstUnique() // return first unique number
You can assume that there must be at least one unique number in the stream when calling the firstUnique.

Example
add(1)
add(2)
firstUnique() => 1
add(1)
firstUnique() => 2

思路:维持一个 deque / queue,碰到相同的就 popleft 出去

class DataStream:

    def __init__():
        # do intialization if necessary
        self.q = collections.deque()
        self.dict = {}
    """
    @param num: next number in stream
    @return: nothing
    """
    def add(self, num):
        # write your code here
        if num in self.dict:
            self.dict[num] += 1
        else:
            self.dict[num] = 1
            self.q.append(num)
    """
    @return: the first unique number in stream
    """
    def firstUnique(self):
        # write your code here
        while len(self.q) > 0 and self.dict[self.q[0]] > 1:
                self.q.popleft()
        return self.q[0]

总结:1.popleft 要在 firstUnique 里面,不然有些 testcase 过不了;2.注意 popleft 的条件要用 while, 用 for 会出错

49. Group Anagrams (Medium)

Given an array of strings, group anagrams together.

Example:

Input: ["eat", "tea", "tan", "ate", "nat", "bat"],
Output:
[
  ["ate","eat","tea"],
  ["nat","tan"],
  ["bat"]
]
Note:

All inputs will be in lowercase.
The order of your output does not matter.

高频

class Solution:
    def groupAnagrams(self, strs: List[str]) -> List[List[str]]:
        d = defaultdict(list)
        for w in strs:
            d[''.join(sorted(w))].append(w)
        return list(d.values())

Blind 75; sorted(s)返回一个list,'''.join()将这个list拼回字符串

953. Verifying an Alien Dictionary (Easy)

In an alien language, surprisingly, they also use English lowercase letters, but possibly in a different order. The order of the alphabet is some permutation of lowercase letters.

Given a sequence of words written in the alien language, and the order of the alphabet, return true if and only if the given words are sorted lexicographically in this alien language.

Example 1:
Input: words = ["hello","leetcode"], order = "hlabcdefgijkmnopqrstuvwxyz"
Output: true
Explanation: As 'h' comes before 'l' in this language, then the sequence is sorted.

Example 2:
Input: words = ["word","world","row"], order = "worldabcefghijkmnpqstuvxyz"
Output: false
Explanation: As 'd' comes after 'l' in this language, then words[0] > words[1], hence the sequence is unsorted.

Example 3:
Input: words = ["apple","app"], order = "abcdefghijklmnopqrstuvwxyz"
Output: false
Explanation: The first three characters "app" match, and the second string is shorter (in size.) According to lexicographical rules "apple" > "app", because 'l' > '∅', where '∅' is defined as the blank character which is less than any other character (More info).
 

Constraints:
1 <= words.length <= 100
1 <= words[i].length <= 20
order.length == 26
All characters in words[i] and order are English lowercase letters.
class Solution:
    def isAlienSorted(self, words: List[str], order: str) -> bool:
        d = {v:i for i, v in enumerate(order)}
        for w1, w2 in zip(words, words[1:]):
            for c1, c2 in zip(w1, w2):
                if d[c1] < d[c2]:
                    break
                elif d[c1] > d[c2]:
                    return False
            if w1[:len(w2)] == w2 and len(w1) > len(w2):
                return False
        return True

138. Copy List with Random Pointer (Medium)

A linked list of length n is given such that each node contains an additional random pointer, which could point to any node in the list, or null.

Construct a deep copy of the list. The deep copy should consist of exactly n brand new nodes, where each new node has its value set to the value of its corresponding original node. Both the next and random pointer of the new nodes should point to new nodes in the copied list such that the pointers in the original list and copied list represent the same list state. None of the pointers in the new list should point to nodes in the original list.

For example, if there are two nodes X and Y in the original list, where X.random --> Y, then for the corresponding two nodes x and y in the copied list, x.random --> y.

Return the head of the copied linked list.

The linked list is represented in the input/output as a list of n nodes. Each node is represented as a pair of [val, random_index] where:

val: an integer representing Node.val
random_index: the index of the node (range from 0 to n-1) that the random pointer points to, or null if it does not point to any node.
Your code will only be given the head of the original linked list.

Example 1:
Example 1 image
Input: head = [[7,null],[13,0],[11,4],[10,2],[1,0]]
Output: [[7,null],[13,0],[11,4],[10,2],[1,0]]

Example 2:
Example 2 image
Input: head = [[1,1],[2,1]]
Output: [[1,1],[2,1]]

Example 3:
Example 3 image
Input: head = [[3,null],[3,0],[3,null]]
Output: [[3,null],[3,0],[3,null]]

Example 4:
Input: head = []
Output: []
Explanation: The given linked list is empty (null pointer), so return null.

Constraints:
0 <= n <= 1000
-10000 <= Node.val <= 10000
Node.random is null or is pointing to some node in the linked list.

class Solution:
    def copyRandomList(self, head: 'Node') -> 'Node':
        d = defaultdict(lambda: Node(0))
        d[None] = None
        p = head
        while p:
            d[p].val = p.val
            d[p].next = d[p.next]
            d[p].random = d[p.random]
            p = p.next
        return d[head]

高频

Heap (Priority Queue)

264. Ugly Number II (Medium)

Write a program to find the n-th ugly number.

Ugly numbers are positive numbers whose prime factors only include 2, 3, 5.

Example:

Input: n = 10
Output: 12
Explanation: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 is the sequence of the first 10 ugly numbers.
Note:

1 is typically treated as an ugly number.
n does not exceed 1690.

思路:九章的 python 答案可以 work,但是实在是不好理解。写个好理解一点的版本。heapq 和 hashMap, 从 heapq 中取 n - 1 次(第一个数为 1),每取一次将原始 ugly numbers 2, 3, 5 过一遍

class Solution(object):
    def nthUglyNumber(self, n):
        """
        :type n: int
        :rtype: int
        """
        primes = [2, 3, 5]
        q = [2, 3, 5]
        hashMap = {}
        for i in range(3):
            hashMap[q[i]] = True
        import heapq
        heapq.heapify(q)
        ans = 1
        for i in range(n - 1):
            ans = heapq.heappop(q)
            for j in range(3):
                new_val = ans * primes[j]
                if new_val not in hashMap:
                    heapq.heappush(q, new_val)
                    hashMap[new_val] = True
        return ans

总结:可以 AC,也可以理解,good enough
二刷:其实是道dp题,用set和heapq也能过,但是时间上没有优势

973. K Closest Points to Origin (Medium)

We have a list of points on the plane. Find the K closest points to the origin (0, 0).
(Here, the distance between two points on a plane is the Euclidean distance.)
You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in.)

Example 1:
Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]
Explanation:
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].

Example 2:
Input: points = [[3,3],[5,-1],[-2,4]], K = 2
Output: [[3,3],[-2,4]]
(The answer [[-2,4],[3,3]] would also be accepted.)

Note:
1 <= K <= points.length <= 10000
-10000 < points[i][0] < 10000
-10000 < points[i][1] < 10000

O(nlogn):

class Solution:
    def kClosest(self, points: List[List[int]], k: int) -> List[List[int]]:
        points.sort(key = lambda p: p[0] ** 2 + p[1] ** 2)
        return points[:k]]

O(nlogk):

class Solution:
    def kClosest(self, points: List[List[int]], k: int) -> List[List[int]]:
        pq = []
        for [x, y] in points:
            if len(pq) < k:
                heapq.heappush(pq, (- x * x - y * y, x, y))
            else:
                heapq.heappushpop(pq, (- x * x - y * y, x, y))
        return [[x, y] for v, x, y in pq]

O(n) on average:

class Solution:
    def kClosest(self, points: List[List[int]], k: int) -> List[List[int]]:
        def qs(l, r):
            if l < r:
                p = partition(l, r)
                if p == k:
                    return
                elif p < k:
                    qs(p + 1, r)
                else:
                    qs(l, p - 1)
        def partition(l, r):
            p = random.randint(l, r)
            points[p], points[r] = points[r], points[p]
            c = l
            for i in range(l, r):
                if points[i][0] ** 2 + points[i][1] ** 2 < points[r][0] ** 2 + points[r][1] ** 2:
                    points[i], points[c] = points[c], points[i]
                    c += 1
            points[c], points[r] = points[r], points[c]
            return c
        qs(0, len(points) - 1)
        return points[:k]

2刷,面经:Amazon。

LinC 545. Top k Largest Numbers II (Medium)

Implement a data structure, provide two interfaces:
add(number). Add a new number in the data structure.
topk(). Return the top k largest numbers in this data structure. k is given when we create the data structure.

Example
s = new Solution(3);
>> create a new data structure.
s.add(3)
s.add(10)
s.topk()
>> return [10, 3]
s.add(1000)
s.add(-99)
s.topk()
>> return [1000, 10, 3]
s.add(4)
s.topk()
>> return [1000, 10, 4]
s.add(100)
s.topk()
>> return [1000, 100, 10]

思路:看着是非常直观的 min heap 问题。。。

class Solution:
    """
    @param: k: An integer
    """
    def __init__(self, k):
        # do intialization if necessary
        self.k = k
        self.q = []
    """
    @param: num: Number to be added
    @return: nothing
    """
    def add(self, num):
        # write your code here
        import heapq
        heapq.heappush(self.q, num)
        if len(self.q) > self.k:
            heapq.heappop(self.q)
    """
    @return: Top k element
    """
    def topk(self):
        # write your code here
        return sorted(self.q, reverse = True)

总结:一句 sorted(self.q, reverse = True) 完爆。。。哎, python 的 buit-in function 返回一个 sorted new list...学习了。

LinC 486. Merge K Sorted Arrays (Medium)

Given k sorted integer arrays, merge them into one sorted array.

Example
Given 3 sorted arrays:

[
  [1, 3, 5, 7],
  [2, 4, 6],
  [0, 8, 9, 10, 11]
]
return [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

Challenge
Do it in O(N log k).

N is the total number of integers.
k is the number of arrays.

思路:看答案,用 heap 屌爆了。加了链接到上面 heap 的部分

class Solution:
    """
    @param arrays: k sorted integer arrays
    @return: a sorted array
    """
    def mergekSortedArrays(self, arrays):
        # write your code here
        import heapq
        q = []
        for level, array in enumerate(arrays):
            if len(array) == 0:
                continue
            heapq.heappush(q, (array[0], level, 0))
        ans = []
        while q:
            cur, level, index = heapq.heappop(q)
            ans.append(cur)
            if index + 1 < len(arrays[level]):
                heapq.heappush(q, (arrays[level][index + 1], level, index + 1))
        return ans

总结:只能说 python 的 heapq 屌爆了

23. Merge k Sorted Lists (Hard)

Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.

Example:
Input:
[
  1->4->5,
  1->3->4,
  2->6
]
Output: 1->1->2->3->4->4->5->6

PriorityQueue:

class Solution:
    def mergeKLists(self, lists: List[Optional[ListNode]]) -> Optional[ListNode]:
        hq = []
        for i, l in enumerate(lists):
            if l:
                heapq.heappush(hq, (l.val, i, l))
        dummy = p = ListNode()
        while hq:
            _, i, l = heapq.heappop(hq)
            p.next = l
            p = p.next
            l = l.next
            if l:
                heapq.heappush(hq, (l.val, i, l))
        return dummy.next

分治:

class Solution:
    def mergeKLists(self, lists: List[Optional[ListNode]]) -> Optional[ListNode]:
        def helper(a, b):
            dummy = p = ListNode()
            while a and b:
                if a.val < b.val:
                    p.next = a
                    a = a.next
                else:
                    p.next = b
                    b = b.next
                p = p.next
            p.next = a or b
            return dummy.next
        if not lists:
            return
        n = len(lists)
        if n == 1:
            return lists[0]
        mid = n // 2
        l = self.mergeKLists(lists[:mid])
        r = self.mergeKLists(lists[mid:])
        return helper(l, r)

两两归并:

class Solution:
    def mergeKLists(self, lists: List[Optional[ListNode]]) -> Optional[ListNode]:
        def helper(a, b):
            dummy = p = ListNode()
            while a and b:
                if a.val < b.val:
                    p.next = a
                    a = a.next
                else:
                    p.next = b
                    b = b.next
                p = p.next
            p.next = a or b
            return dummy.next
        if not lists:
            return
        n = len(lists)
        interval = 1
        while interval < n:
            for i in range(0, n - interval, interval * 2):
                lists[i] = helper(lists[i], lists[i + interval])
            interval *= 2
        return lists[0]

高频: 时间复杂度均为 O(NlogK)

295. Find Median from Data Stream (Hard)

Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.

For example,
[2,3,4], the median is 3
[2,3], the median is (2 + 3) / 2 = 2.5

Design a data structure that supports the following two operations:
void addNum(int num) - Add a integer number from the data stream to the data structure.
double findMedian() - Return the median of all elements so far.

Example:
addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2

Follow up:
If all integer numbers from the stream are between 0 and 100, how would you optimize it?
If 99% of all integer numbers from the stream are between 0 and 100, how would you optimize it?

class MedianFinder:
    def __init__(self):
        self.l, self.h = [], []

    def addNum(self, num: int) -> None:
        heapq.heappush(self.l, -heapq.heappushpop(self.h, num))
        if len(self.l) > len(self.h):
            heapq.heappush(self.h, -heapq.heappop(self.l))

    def findMedian(self) -> float:
        if len(self.l) == len(self.h):
            return (self.h[0] - self.l[0]) / 2
        else:
            return self.h[0]

Blind 75; 面经:Amazon,maxheap + minheap,用负数模拟minheap

743. Network Delay Time (Medium)

There are N network nodes, labelled 1 to N.
Given times, a list of travel times as directed edges times[i] = (u, v, w), where u is the source node, v is the target node, and w is the time it takes for a signal to travel from source to target.
Now, we send a signal from a certain node K. How long will it take for all nodes to receive the signal? If it is impossible, return -1.
network example
Example 1:
Input: times = [[2,1,1],[2,3,1],[3,4,1]], N = 4, K = 2
Output: 2
Note:
N will be in the range [1, 100].
K will be in the range [1, N].
The length of times will be in the range [1, 6000].
All edges times[i] = (u, v, w) will have 1 <= u, v <= N and 0 <= w <= 100.

class Solution:
    def networkDelayTime(self, times: List[List[int]], N: int, K: int) -> int:
        graph = collections.defaultdict(dict)
        for u, v, w in times:
            graph[u - 1][v - 1] = w
        distances = [sys.maxsize] * N
        distances[K - 1] = 0
        pq = [(0, K - 1)]
        seen = set()
        while pq:
            dist, v1 = heapq.heappop(pq)
            if v1 not in seen:
                seen.add(v1)
                for v2 in graph[v1]:
                    if v2 not in seen:
                        prev = distances[v2]
                        cur = dist + graph[v1][v2]
                        if cur < prev:
                            distances[v2] = cur
                            heapq.heappush(pq, (cur, v2))
        ans = max(distances)
        return -1 if ans == sys.maxsize else ans

面经:练习某家小公司的OA,Dijkstra Graph 最短路径,Dijkstra有很多变种问题,不同写法。

787. Cheapest Flights Within K Stops (Medium)

There are n cities connected by m flights. Each fight starts from city u and arrives at v with a price w.

Now given all the cities and flights, together with starting city src and the destination dst, your task is to find the cheapest price from src to dst with up to k stops. If there is no such route, output -1.

Example 1:
Input:
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
src = 0, dst = 2, k = 1
Output: 200
Explanation:
The graph looks like this:

The cheapest price from city 0 to city 2 with at most 1 stop costs 200, as marked red in the picture.
Example 2:
Input:
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
src = 0, dst = 2, k = 0
Output: 500
Explanation:
The graph looks like this:

The cheapest price from city 0 to city 2 with at most 0 stop costs 500, as marked blue in the picture.
Note:

The number of nodes n will be in range [1, 100], with nodes labeled from 0 to n - 1.
The size of flights will be in range [0, n * (n - 1) / 2].
The format of each flight will be (src, dst, price).
The price of each flight will be in the range [1, 10000].
k is in the range of [0, n - 1].
There will not be any duplicated flights or self cycles.
class Solution:
    def findCheapestPrice(self, n: int, flights: List[List[int]], src: int, dst: int, K: int) -> int:
        graph = collections.defaultdict(dict)
        for u, v, w in flights:
            graph[u][v] = w
        costs = [sys.maxsize] * n
        costs[src] = 0
        pq = [(0,  src, 0)]
        while pq:
            import heapq
            cost, v1, stop = heapq.heappop(pq)
            if stop - 1 <= K:
                if v1 == dst:
                    return cost
                for v2 in graph[v1]:
                    pre = costs[v2]
                    cur = cost + graph[v1][v2]
                    if cur < pre:
                        heapq.heappush(pq, (cur, v2, stop + 1))
        return -1

面经:与上题不同之处是这里问的不是全局最优,而是符合条件的最优,同一个点可能需要重复访问才能找到符合条件的最优,因此无需seen这个set

855. Exam Room (Medium)

In an exam room, there are N seats in a single row, numbered 0, 1, 2, ..., N-1.
When a student enters the room, they must sit in the seat that maximizes the distance to the closest person. If there are multiple such seats, they sit in the seat with the lowest number. (Also, if no one is in the room, then the student sits at seat number 0.)
Return a class ExamRoom(int N) that exposes two functions: ExamRoom.seat() returning an int representing what seat the student sat in, and ExamRoom.leave(int p) representing that the student in seat number p now leaves the room. It is guaranteed that any calls to ExamRoom.leave(p) have a student sitting in seat p.

Example 1:
Input: ["ExamRoom","seat","seat","seat","seat","leave","seat"], [[10],[],[],[],[],[4],[]]
Output: [null,0,9,4,2,null,5]
Explanation:
ExamRoom(10) -> null
seat() -> 0, no one is in the room, then the student sits at seat number 0.
seat() -> 9, the student sits at the last seat number 9.
seat() -> 4, the student sits at the last seat number 4.
seat() -> 2, the student sits at the last seat number 2.
leave(4) -> null
seat() -> 5, the student sits at the last seat number 5.

Note:
1 <= N <= 10^9
ExamRoom.seat() and ExamRoom.leave() will be called at most 10^4 times across all test cases.
Calls to ExamRoom.leave(p) are guaranteed to have a student currently sitting in seat number p.

class ExamRoom:
    import heapq
    def __init__(self, N: int):
        self.N = N
        self.L = []

    def seat(self) -> int:
        if not self.L:
            res = 0
        else:
            d, res = self.L[0], 0
            for x, y in zip(self.L, self.L[1:]):
                if (y - x) // 2 > d:
                    d = (y - x) // 2
                    res = x + (y - x) // 2
            if self.N - 1 - self.L[-1] > d:
                res = self.N - 1
        bisect.insort(self.L, res)
        return res

    def leave(self, p: int) -> None:
        self.L.remove(p)

面经: Cruise。正常思路是得用PriorityQueue。但是corner case写不出来,讨论区答案里java用个特殊的数据结构搭配pq,加上一个trick,不适合模板解题。...if y - x // 2 > d:...if self.N - 1 - self.L[-1] > d: res = self.N - 1...bisect.insort(...)...

Trie

208. Implement Trie (Prefix Tree) (Medium)

Implement a trie with insert, search, and startsWith methods.

Example:

Trie trie = new Trie();

trie.insert("apple");
trie.search("apple");   // returns true
trie.search("app");     // returns false
trie.startsWith("app"); // returns true
trie.insert("app");
trie.search("app");     // returns true
Note:

You may assume that all inputs are consist of lowercase letters a-z.
All inputs are guaranteed to be non-empty strings.
class Trie(object):

    def __init__(self):
        self.trie = {}

    def insert(self, word):
        t = self.trie
        for c in word:
            t = t.setdefault(c, {})
        t['/'] = ''
        
    def __find(self, word):
        t = self.trie
        for c in word:
            if c not in t:
                return False
            t = t[c]
        return t


    def search(self, word):
        t = self.__find(word)
        if t:
            return '/' in t
        else:
            return False

    def startsWith(self, prefix):
        return self.__find(prefix) != False

写法2:

class TrieNode:
    
    def __init__(self):
        self.children = defaultdict(TrieNode)
        self.eow = False
        
class Trie(object):

    def __init__(self):
        self.root = TrieNode()

    def insert(self, word):
        """
        :type word: str
        :rtype: None
        """
        root = self.root
        for c in word:
            root = root.children[c]
        root.eow = True

    def search(self, word):
        """
        :type word: str
        :rtype: bool
        """
        root = self._find(word)
        return root.eow if root else False

    def startsWith(self, prefix):
        """
        :type prefix: str
        :rtype: bool
        """
        root = self._find(prefix)
        return root
        
    def _find(self, word):
        root = self.root
        for c in word:
            if c not in root.children:
                return
            root = root.children[c]
        return root

高频

211. Design Add and Search Words Data Structure (Medium)

Design a data structure that supports adding new words and finding if a string matches any previously added string.

Implement the WordDictionary class:

WordDictionary() Initializes the object.
void addWord(word) Adds word to the data structure, it can be matched later.
bool search(word) Returns true if there is any string in the data structure that matches word or false otherwise. word may contain dots '.' where dots can be matched with any letter.

Example:
Input
["WordDictionary","addWord","addWord","addWord","search","search","search","search"]
[[],["bad"],["dad"],["mad"],["pad"],["bad"],[".ad"],["b.."]]
Output
[null,null,null,null,false,true,true,true]

Explanation
WordDictionary wordDictionary = new WordDictionary();
wordDictionary.addWord("bad");
wordDictionary.addWord("dad");
wordDictionary.addWord("mad");
wordDictionary.search("pad"); // return False
wordDictionary.search("bad"); // return True
wordDictionary.search(".ad"); // return True
wordDictionary.search("b.."); // return True
 
Constraints:
1 <= word.length <= 25
word in addWord consists of lowercase English letters.
word in search consist of '.' or lowercase English letters.
There will be at most 2 dots in word for search queries.
At most 104 calls will be made to addWord and search.
class WordDictionary:
    def __init__(self):
        self.trie = {}

    def addWord(self, word: str) -> None:
        trie = self.trie
        for c in word:
            trie = trie.setdefault(c, {})
        trie['/'] = ''

    def search(self, word: str) -> bool:
        def helper(trie, i):
            if i == len(word):
                return '/' in trie
            c = word[i]
            if c in trie:
                return helper(trie[c], i + 1)
            elif c == '.':
                return any(helper(child, i + 1) for child in trie.values() if isinstance(child, dict))
            return False
        return helper(self.trie, 0)

Blind 75

212. Word Search II (Hard)

Given an m x n board of characters and a list of strings words, return all words on the board.

Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.

Example 1:
board example 1

Input: board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
Output: ["eat","oath"]

Example 2:
board example 2

Input: board = [["a","b"],["c","d"]], words = ["abcb"]
Output: []

Constraints:
m == board.length
n == board[i].length
1 <= m, n <= 12
board[i][j] is a lowercase English letter.
1 <= words.length <= 3 * 104
1 <= words[i].length <= 10
words[i] consists of lowercase English letters.
All the strings of words are unique.

class Solution:
    def findWords(self, board: List[List[str]], words: List[str]) -> List[str]:
        trie = {}
        for w in words:
            t = trie
            for c in w:
                t = t.setdefault(c, {})
            t['/'] = w
        def helper(trie, r, c):
            char = board[r][c]
            child = trie[char]
            if '/' in child:
                ans.append(child['/'])
                del child['/']
            board[r][c] = ''
            for nr, nc in [(r + 1, c), (r - 1, c), (r, c + 1), (r, c - 1)]:
                if 0 <= nr <= m - 1 and 0 <= nc <= n - 1 and board[nr][nc] and board[nr][nc] in child:
                    helper(child, nr, nc)
            board[r][c] = char
            if not child:
                del trie[char]
        ans = []
        m, n = len(board), len(board[0])
        for r in range(m):
            for c in range(n):
                if board[r][c] in trie:
                    helper(trie, r, c)
        return ans

blind 75, time complexity: O(m×n×4^L) L: longest word's length

DP Dynamic Programming 动态规划

70. Climbing Stairs (Easy)

You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Note: Given n will be a positive integer.

Example 1:

Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
Example 2:

Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step

思路:f[n] 是为 n 时的方案数,f[1] 是为 1 时的方案数 = 1。那么爬到第n层的方法要么是从第n-1层一步上来的,要不就是从n-2层2步上来的,所以递推公式非常容易的就得出了:f[n] = f[n - 1] + f[n - 2]

class Solution:
    def climbStairs(self, n: int) -> int:
        f = [0] * (n + 1)
        f[0] = f[1] = 1
        for i in range(2, n + 1):
            f[i] = f[i - 1] + f[i - 2]
        return f[-1]

Blind 75; 高频, 爬到第n层的方法要么是从第n-1层1步上来的,要不就是从n-2层2步上来的

120. Triangle (Medium)

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:

Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

思路:看了 top down 的 DP, 还是比较好理解的。f 代表到达 row 和 col 位置的最小 sum,f[i][j] 和 f[i - 1][j - 1] 的关系是:f[i][j] = mins(f[i - 1][j - 1], f[i - 1][j]) + triangle[i][j]. 规划的目标是最后一行中的最小值。;DP 以外还有三种解法,DFS:Traverse, DFS:Divide and Conquer, DFS:Divide and Conquer 加 memorization

class Solution:
    def minimumTotal(self, triangle):
        """
        :type triangle: List[List[int]]
        :rtype: int
        """
        if len(triangle) == 0:
            return 0
        if len(triangle) == 1:
            return triangle[0][0]
        f = []
        f.append([triangle[0][0]])
        n = len(triangle)
        for i in range(1, n):
            f.append([0] * (i + 1))
        for i in range(1, n):
            f[i][0] = f[i - 1][0] + triangle[i][0]
            f[i][i] = f[i - 1][i - 1] + triangle[i][i]
        for row in range(2, n):
            for col in range(1, row):
                f[row][col] = min(f[row - 1][col - 1], f[row - 1][col]) + triangle[row][col]
        ans = f[n - 1][0]
        for i in range(1, n):
            ans = min(ans, f[n - 1][i])
        return ans

高频:

class Solution:
    def minimumTotal(self, triangle: List[List[int]]) -> int:
        n = len(triangle)
        f = [[0] * (i + 1) for i in range(n)]
        f[0][0] = triangle[0][0]
        for i in range(1, n):
            for j in range(i + 1):
                if j == 0:
                    f[i][0] = f[i - 1][0] + triangle[i][j]
                elif j == i:
                    f[i][j] = f[i - 1][j - 1] + triangle[i][j]
                else:
                    f[i][j] = min(f[i - 1][j - 1], f[i - 1][j]) + triangle[i][j]
        return min(f[n - 1])

bottom up:

class Solution:
    def minimumTotal(self, triangle: List[List[int]]) -> int:
        n = len(triangle)
        if n == 1:
            return triangle[0][0]
        f = [[0] * (i + 1) for i in range(n)]
        f[n - 1] = triangle[-1][:]
        for r in range(n - 2, -1, -1):
            for c in range(r + 1):
                f[r][c] = min(f[r + 1][c], f[r + 1][c + 1]) + triangle[r][c]
        return f[0][0]

总结:填充 f 每行第一个和最后一个的时候别忘了 + triangle[i][0] 和 triangle[i][i]
高频:注意topdown:下一层f[i][j]的时候要根据j的情况来分类判断f的值如何获得, 一刷的时候提前把三角的两条边先初始化了,循环的时候不循环那些元素。也是个好办法。代码稍微长一点。bottomup:代码简单很多。还可以进一步将空间降为O(n),因为之前算出来的f[r + 1][]都没用

121. Best Time to Buy and Sell Stock (Easy)

Say you have an array for which the ith element is the price of a given stock on day i.
If you were only permitted to complete at most one transaction (i.e., buy one and sell one share of the stock), design an algorithm to find the maximum profit.
Note that you cannot sell a stock before you buy one.

Example 1:
Input: [7,1,5,3,6,4]
Output: 5
Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Not 7-1 = 6, as selling price needs to be larger than buying price.

Example 2:
Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

greedy:

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        lowest = prices[0]
        ans = 0
        for p in prices[1:]:
            ans = max(ans, p - lowest)
            lowest = min(lowest, p)
        return ans
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        ans = 0
        pre = prices[0]
        for i in range(1, len(prices)):
            if prices[i] > pre:
                ans = max(ans, prices[i] - pre)
            else:
                pre = prices[i]
        return ans

DP:

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        dp = [0] * len(prices)
        min_p = prices[0]
        for i in range(1, len(prices)):
            dp[i] = max(dp[i - 1], prices[i] - min_p)
            min_p = min(min_p, prices[i])
        return dp[-1]
class Solution:
    def maxProfit(self, prices):
        lowest = prices[0]
        n = len(prices)
        dp = [0] * n
        for i in range(1, n):
            if prices[i] <= prices[i - 1]:
                dp[i] = dp[i - 1]
                lowest = min(prices[i], lowest)
            else:
                dp[i] = max(dp[i - 1], prices[i] - lowest)
        return dp[-1]

高频

122. Best Time to Buy and Sell Stock II (Easy)

Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete as many transactions as you like (i.e., buy one and sell one share of the stock multiple times).
Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

Example 1:
Input: [7,1,5,3,6,4]
Output: 7
Explanation: Buy on day 2 (price = 1) and sell on day 3 (price = 5), profit = 5-1 = 4.
Then buy on day 4 (price = 3) and sell on day 5 (price = 6), profit = 6-3 = 3.

Example 2:
Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
engaging multiple transactions at the same time. You must sell before buying again.
Example 3:
Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        n = len(prices)
        f = [0] * n
        for i in range(1, n):
            if prices[i] <= prices[i - 1]:
                f[i] = f[i - 1]
            else:
                f[i] = max(f[i], f[i - 1] + prices[i] - prices[i - 1])
        return f[-1]

3刷:高频,可以无限买卖=可以抓住所有价格上升的机会,可优化为O(1)空间的算法,因为不在乎中间利润,中间利润累加上去返回

123. Best Time to Buy and Sell Stock III (Hard)

generalized best time to buy and sell stocks
You are given an array prices where prices[i] is the price of a given stock on the ith day.
Find the maximum profit you can achieve. You may complete at most two transactions.
Note: You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).

Example 1:
Input: prices = [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.

Example 2:
Input: prices = [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are engaging multiple transactions at the same time. You must sell before buying again.

Example 3:
Input: prices = [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

Constraints:
1 <= prices.length <= 105
0 <= prices[i] <= 105

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        buy1, sell1 = float('-inf'), 0
        buy2, sell2 = float('-inf'), 0
        for price in prices:
            buy1 = max(buy1, -price)
            sell1 = max(sell1, buy1 + price)
            buy2 = max(buy2, sell1 - price)
            sell2 = max(sell2, buy2 + price)
        return sell2

91. Decode Ways (Medium)

A message containing letters from A-Z is being encoded to numbers using the following mapping:

'A' -> 1
'B' -> 2
...
'Z' -> 26
Given a non-empty string containing only digits, determine the total number of ways to decode it.

Example 1:

Input: "12"
Output: 2
Explanation: It could be decoded as "AB" (1 2) or "L" (12).
Example 2:

Input: "226"
Output: 3
Explanation: It could be decoded as "BZ" (2 26), "VF" (22 6), or "BBF" (2 2 6).
class Solution:
    def numDecodings(self, s: str) -> int:
        if s[0] == '0':
            return 0
        n = len(s)
        dp = [0] * (n + 1)
        dp[0] = dp[1] = 1
        for i in range(2, n + 1):
            one = int(s[i - 1])
            two = int(s[i - 2: i])
            if one != 0:
                dp[i] += dp[i - 1]
            if 10 <= two <= 26:
                dp[i] += dp[i - 2]
        return dp[n]

O(1) 空间

class Solution:
    def numDecodings(self, s: str) -> int:
        if s[0] == '0':
            return 0
        n = len(s)
        ans = pre = 1
        for i in range(2, n + 1):
            one = int(s[i - 1])
            two = int(s[i - 2: i])
            cur = 0
            if one != 0:
                cur = ans
            if 10 <= two <= 26:
                cur += pre
            ans, pre = cur, ans
        return ans

Blind 75; 高频; dp[n]为第n个数的方案数,0个字1个方案,1个字1个方案

62. Unique Paths (Medium)

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right
Example 2:

Input: m = 7, n = 3
Output: 28
class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        dp = [[1] * n for _ in range(m)]
        for r in range(1, m):
            for c in range(1, n):
                dp[r][c] = dp[r - 1][c] + dp[r][c - 1]
        return dp[-1][-1]

高频; Blind 75

53. Maximum Subarray (Medium)

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        ans = t = nums[0]
        for num in nums[1:]:
            t = max(t + num, num)
            ans = max(ans, t)
        return ans
class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        n = len(nums)
        dp = [0] * n
        dp[0] = nums[0]
        for i in range(1, n):
            dp[i] = max(nums[i], dp[i - 1] + nums[i])
        return max(dp)

Blind 75; 高频,面经:维萨 todo divide and conquer

63. Unique Paths II (Medium)

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
Note: m and n will be at most 100.

Example 1:
Input:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
Output: 2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:

  1. Right -> Right -> Down -> Down
  2. Down -> Down -> Right -> Right

space O(mxn):

class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
        if obstacleGrid[0][0] == 1:
            return 0
        m, n = len(obstacleGrid), len(obstacleGrid[0])
        f = [[0] * n for _ in range(m)]
        f[0][0] = 1
        for c in range(1, n):
            f[0][c] = 0 if obstacleGrid[0][c] == 1 else f[0][c - 1]
        for r in range(1, m):
            f[r][0] = 0 if obstacleGrid[r][0] == 1 else f[r - 1][0]
        for r in range(1, m):
            for c in range(1, n):
                f[r][c] = 0 if obstacleGrid[r][c] == 1 else f[r - 1][c] + f[r][c - 1]
        return f[-1][-1]

space: O(n):

class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
        if obstacleGrid[0][0] == 1:
            return 0
        m, n = len(obstacleGrid), len(obstacleGrid[0])
        f = [0] * n
        f[0] = 1
        for c in range(1, n):
            f[c] = 0 if obstacleGrid[0][c] == 1 else f[c - 1]
        for r in range(1, m):
            if obstacleGrid[r][0] == 1:
                f[0] = 0
            for c in range(1, n):
                f[c] = 0 if obstacleGrid[r][c] == 1 else f[c] + f[c - 1]
        return f[-1]

2刷:高频,面经:Celo, todo: space: O(1)

64. Minimum Path Sum (Medium)

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
空间O(m*n):

class Solution:
    def minPathSum(self, grid: List[List[int]]) -> int:
        m, n = len(grid), len(grid[0])
        f = [[0] * n for _ in range(m)]
        f[0][0] = grid[0][0]
        for c in range(1, n):
            f[0][c] = f[0][c - 1] + grid[0][c]
        for r in range(1, m):
            f[r][0] = f[r - 1][0] + grid[r][0]
        for r in range(1, m):
            for c in range(1, n):
                f[r][c] = min(f[r - 1][c], f[r][c - 1]) + grid[r][c]
        return f[-1][-1]

空间O(n):

class Solution:
    def minPathSum(self, grid: List[List[int]]) -> int:
        m, n = len(grid), len(grid[0])
        f = [0] * n
        f[0] = grid[0][0]
        for c in range(1, n):
            f[c] = f[c - 1] + grid[0][c]
        for r in range(1, m):
            f[0] += grid[r][0]
            for c in range(1, n):
                f[c] = min(f[c], f[c - 1]) + grid[r][c]
        return f[-1]

2刷:高频,面经:Amazon:优化空间可以将二维数组f压缩为一维,因为答案不关心中间值

72. Edit Distance (Hard)

Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

You have the following 3 operations permitted on a word:

Insert a character
Delete a character
Replace a character
Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

高频:f 为从 m 的前 i 个变到 n 的前 j 个字符串所需的最少步骤, 第前 i 个字符串 == word1[i - 1]...if word1[i - 1] == word2[j - 1]: f[i][j] = f[i - 1][j - 1]...else: f[i][j] = min(f[i - 1][j - 1], f[i - 1][j], f[i][j - 1]) + 1

132. Palindrome Partitioning II (Hard)

Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

Example:

Input: "aab"
Output: 1
Explanation: The palindrome partitioning ["aa","b"] could be produced using 1 cut.
class Solution:
    def minCut(self, s: str) -> int:
        n = len(s)
        f = [0 for _ in range(n)]
        p = [[False for _ in range(n + 1)] for _ in range(n + 1)]
        for i in range(n):
            f[i] = i
            for j in range(i + 1):
                if s[i] == s[j] and (i - j < 2 or p[j + 1][i - 1]):
                    p[j][i] = True
                    f[i] = 0 if j == 0 else min(f[i], f[j - 1] + 1)
        return f[n - 1]

高频:f为从0到i(i从0到n-1)字符串的mincut数。p为从j到i是否是回文,因为j(从0到i,i从0到n-1)可能到j+1,因此p [...in range(n + 1)]。...for j in range(i + 1):...and (i - j < 2 or p[j + 1][i - 1])...

55. Jump Game (Medium)

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Determine if you are able to reach the last index.

Example 1:

Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:

Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
             jump length is 0, which makes it impossible to reach the last index.
class Solution:
    def canJump(self, nums: List[int]) -> bool:
        reach = 0
        for i, num in enumerate(nums):
            if i > reach:
                return False
            reach = max(reach, i + num)
        return True
class Solution:
    def canJump(self, nums: List[int]) -> bool:
        n = len(nums)
        dp = [0] * n
        dp[0] = nums[0]
        for i in range(1, n):
            dp[i] = max(dp[i - 1], nums[i - 1]) - 1
            if dp[i] < 0:
                return False
        return True
class Solution:
    def canJump(self, nums: List[int]) -> bool:
        n = len(nums)
        remain = nums[0]
        for i in range(1, n):
            remain = max(remain, nums[i - 1]) - 1
            if remain < 0:
                return False
        return True
class Solution:
    def canJump(self, nums: List[int]) -> bool:
        n = len(nums)
        dp = [False] * n
        dp[0] = True
        for i in range(n - 1):
            if dp[i]:
                for j in range(i, min(n, i + nums[i] + 1)):
                    dp[j] = True
        return dp[-1]

Blind 75; 高频:dp为当前能否到达。dp为当前位置的剩余步数。greedy:reach为从0点能到的最远距离,或者当前还剩余可跳的步数

96. Unique Binary Search Trees (Medium)

Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n?

Example:

Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST's:

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3
class Solution:
    def numTrees(self, n: int) -> int:
        f = [0] * (n + 1)
        f[0] = f[1] = 1
        for i in range(2, n + 1):
            for j in range(1, i + 1):
                f[i] += f[j - 1] * f[i - j]
        return f[n]

高频:关键是要知道f推导公式:g[i, n]代表以i为root的bst,f[n] = g[1, n] + g[2, n] +...+ g[n, n], g[i, n] = f[i - 1] * f[n - i]。以i为root的左边是i - 1个数,右边是n - i个数,具体数值对于f方案数并不是那么重要。

95. Unique Binary Search Trees II (Medium)

Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ... n.

Example:

Input: 3
Output:
[
  [1,null,3,2],
  [3,2,null,1],
  [3,1,null,null,2],
  [2,1,3],
  [1,null,2,null,3]
]
Explanation:
The above output corresponds to the 5 unique BST's shown below:

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3
class Solution:
    def generateTrees(self, n: int) -> List[TreeNode]:
        if n == 0:
            return []
        def gen(s, e):
            if s > e: return [None]
            res = []
            for i in range(s, e + 1):
                for l in gen(s, i - 1):
                    for r in gen(i + 1, e):
                        root = TreeNode(i)
                        root.left = l
                        root.right = r
                        res.append(root)
            return res
        return gen(1, n)

高频:看着像非主流dp题。...def gen(s, e):...res = []...for l in gen(s, i - 1):...return gen(1, n)

198. House Robber (Easy)

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

Example 1:

Input: [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
             Total amount you can rob = 1 + 3 = 4.
Example 2:

Input: [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
             Total amount you can rob = 2 + 9 + 1 = 12.
class Solution:
    def rob(self, nums: List[int]) -> int:
        n = len(nums)
        if n <= 2:
            return max(nums)
        dp = [0] * n
        dp[0], dp[1] = nums[0], max(nums[0], nums[1])
        for i in range(2, n):
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])
        return dp[-1]

Blind 75; 高频; 面经:Quora。dp[i] = max(抢,或不抢i房)

213. House Robber II (Medium)

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

Example 1:
Input: [2,3,2]
Output: 3
Explanation: You cannot rob house 1 (money = 2) and then rob house 3 (money = 2),
because they are adjacent houses.
Example 2:
Input: [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.

class Solution:
    def rob(self, nums: List[int]) -> int:
        n = len(nums)
        if n <=3:
            return max(nums)
        dp1, dp2 = [0] * n, [0] * n
        dp1[0] = dp1[1] = nums[0]
        dp2[1] = nums[1]
        for i in range(2, n):
            dp1[i] = max(dp1[i - 2] + nums[i], dp1[i - 1])
            dp2[i] = max(dp2[i - 2] + nums[i], dp2[i - 1])
        return max(dp1[-2], dp2[-1])

Blind 75; 面经:Quora。

10. Regular Expression Matching (Hard)

Given an input string (s) and a pattern (p), implement regular expression matching with support for '.' and '*'.

'.' Matches any single character.
'*' Matches zero or more of the preceding element.
The matching should cover the entire input string (not partial).

Note:

s could be empty and contains only lowercase letters a-z.
p could be empty and contains only lowercase letters a-z, and characters like . or *.
Example 1:

Input:
s = "aa"
p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".
Example 2:

Input:
s = "aa"
p = "a*"
Output: true
Explanation: '*' means zero or more of the precedeng element, 'a'. Therefore, by repeating 'a' once, it becomes "aa".
Example 3:

Input:
s = "ab"
p = ".*"
Output: true
Explanation: ".*" means "zero or more (*) of any character (.)".
Example 4:

Input:
s = "aab"
p = "c*a*b"
Output: true
Explanation: c can be repeated 0 times, a can be repeated 1 time. Therefore it matches "aab".
Example 5:

Input:
s = "mississippi"
p = "mis*is*p*."
Output: false

DP:

class Solution:
    def isMatch(self, s: str, p: str) -> bool:
        ls, lp = len(s), len(p)
        f = [[False] * (lp + 1) for _ in range(ls + 1)]
        f[0][0] = True
        for j in range(1, lp):
            if p[j] == '*':
                f[0][j + 1] = f[0][j - 1]
        for i in range(ls):
            for j in range(lp):
                if p[j] == '.' or s[i] == p[j]:
                    f[i + 1][j + 1] = f[i][j]
                if p[j] == '*':
                    if s[i] != p[j - 1] and p[j - 1] != '.':
                        f[i + 1][j + 1] = f[i + 1][j - 1]
                    else:
                        f[i + 1][j + 1] =  f[i][j + 1] or f[i + 1][j] or f[i + 1][j - 1]
        return f[-1][-1]

Backtracking:

class Solution:
    def isMatch(self, s: str, p: str) -> bool:
        if not p:
            return not s
        first_matched = len(s) > 0 and (s[0] == p[0] or p[0] == '.')
        if len(p) > 1 and p[1] == '*':
            return self.isMatch(s, p[2:]) or (first_matched and self.isMatch(s[1:], p))
        else:
            return first_matched and self.isMatch(s[1:], p[1:])

高频:dp:怎么写都不是很直观,目前采用range和p[],s[]取值简化写。当前p的字符位'.'或者和s当前字符相等即前进。'*'分两种情况:1.p前一位不是'.'与当前s字符也不等,a* counts as empty 2.等或者是'.(*)',a* counts as multiple a / a* counts as single a / a* counts as empty。时间空间复杂度均为O(lslp)
backtracking: 关键要用s = "aab" p = "c
ab"来记住如果有,要么忽略这部分p,要么删掉第一个匹配的字符这个算法。...if not p:...firt_matched = len(s) > 0 and (s[0]...)...时间空间复杂度:leetcode solution里有,较复杂

44. Wildcard Matching (Hard)

Given an input string (s) and a pattern (p), implement wildcard pattern matching with support for '?' and ''.
'?' Matches any single character.
'
' Matches any sequence of characters (including the empty sequence).
The matching should cover the entire input string (not partial).

Note:
s could be empty and contains only lowercase letters a-z.
p could be empty and contains only lowercase letters a-z, and characters like ? or * .

Example 1:
Input:
s = "aa"
p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".

Example 2:
Input:
s = "aa"
p = ""
Output: true
Explanation: '
' matches any sequence.

Example 3:
Input:
s = "cb"
p = "?a"
Output: false
Explanation: '?' matches 'c', but the second letter is 'a', which does not match 'b'.

Example 4:
Input:
s = "adceb"
p = "ab"
Output: true
Explanation: The first '' matches the empty sequence, while the second ' ' matches the substring "dce".

Example 5:
Input:
s = "acdcb"
p = "a*c?b"
Output: false

class Solution:
    def isMatch(self, s: str, p: str) -> bool:
        ls, lp = len(s), len(p)
        dp = [[False] * (lp + 1) for _ in range(ls + 1)]
        dp[0][0] = True
        for j in range(lp):
            if p[j] == '*':
                dp[0][j + 1] = dp[0][j]
        for i in range(ls):
            for j in range(lp):
                if s[i] == p[j] or p[j] == '?':
                    dp[i + 1][j + 1] = dp[i][j]
                elif p[j] == '*':
                    dp[i + 1][j + 1] = dp[i][j + 1] or dp[i + 1][j]
        return dp[-1][-1]

高频:和上题统一的模板,当j位置的p是'?' 或者和i位置���s相等时,均前进...f[i + 1][j + 1] = f[i][j],当j位置是'*'时,两种情况,* count as multiple char / * count as single char ...f[i + 1][j + 1] = f[i][j + 1] or f[i + 1][j]...
面经:Quora。

139. Word Break (Medium)

Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, determine if s can be segmented into a space-separated sequence of one or more dictionary words.

Note:
The same word in the dictionary may be reused multiple times in the segmentation.
You may assume the dictionary does not contain duplicate words.

Example 1:
Input: s = "leetcode", wordDict = ["leet", "code"]
Output: true
Explanation: Return true because "leetcode" can be segmented as "leet code".

Example 2:
Input: s = "applepenapple", wordDict = ["apple", "pen"]
Output: true
Explanation: Return true because "applepenapple" can be segmented as "apple pen apple".
Note that you are allowed to reuse a dictionary word.
Example 3:
Input: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
Output: false

class Solution:
    def wordBreak(self, s: str, wordDict: List[str]) -> bool:
        n = len(s)
        dp = [False] * (n + 1)
        dp[0] = True
        wordDict = set(wordDict)
        for r in range(1, n + 1):
            for l in range(r):
                if dp[l] and s[l:r] in wordDict:
                    dp[r] = True
                    break
        return dp[n]

BFS

class Solution:
    def wordBreak(self, s: str, wordDict: List[str]) -> bool:
        wordDict = set(wordDict)
        q = deque([0])
        n = len(s)
        visited = [False] * n
        while q:
            l = q.popleft()
            if visited[l]:
                continue
            for r in range(l + 1, n + 1):
                if s[l:r] in wordDict:
                    if r == n:
                        return True
                    q.append(r)
            visited[l] = True
        return False

Blind 75; O(n^2*k) k = wordDict里平均单词的长度; 面经:Amazon,维萨

152. Maximum Product Subarray (Medium)

Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product.

Example 1:
Input: [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.

Example 2:
Input: [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.

class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        n = len(nums)
        dpMin = [0] * n
        dpMax = [0] * n
        dpMin[0] = dpMax[0] = nums[0]
        for i in range(1, n):
            dpMin[i] = min(nums[i], dpMin[i - 1] * nums[i], dpMax[i - 1] * nums[i])
            dpMax[i] = max(nums[i], dpMin[i - 1] * nums[i], dpMax[i - 1] * nums[i])
        return max(dpMax)

O(1)空间

class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        ans = max_p = min_p = nums[0]
        for num in nums[1:]:
            max_p, min_p = max(num, max_p * num, min_p * num), min(num, max_p * num, min_p * num)
            ans = max(ans, max_p)
        return ans
class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        ans = pre_min = pre_max = nums[0]
        for num in nums[1:]:
            dp_min = min(pre_min * num, pre_max * num, num)
            dp_max = max(pre_max * num, pre_min * num, num)
            ans = max(ans, dp_max)
            pre_min, pre_max = dp_min, dp_max
        return ans
class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        ans = t_max = t_min = nums[0]
        for n in nums[1:]:
            if n < 0:
                t_max, t_min = t_min, t_max
            t_max = max(n, t_max * n)
            t_min = min(n, t_min * n)
            ans = max(ans, t_max)       
        return ans

Blind 75; 面经:维萨。保存当前最大和最小值,因为最小值随时可能乘出最大值。 优化是用O(1)空间, 因为仅需要中途算出来的最大值

516. Longest Palindromic Subsequence (Medium)

Given a string s, find the longest palindromic subsequence's length in s. You may assume that the maximum length of s is 1000.

Example 1:
Input:
"bbbab"
Output:
4
One possible longest palindromic subsequence is "bbbb".

Example 2:
Input:
"cbbd"
Output:
2
One possible longest palindromic subsequence is "bb".

brute force recursion O(2^n) worst case TLE:

class Solution:
    def longestPalindromeSubseq(self, s: str) -> int:
        return self.helper(0, len(s) - 1, s)
    def helper(self, l, r, s):
        if l == r:
            return 1
        if l > r:
            return 0
        return 2 + self.helper(l + 1, r - 1, s) if s[l] == s[r] else max(self.helper(l + 1, r, s), self.helper(l, r - 1, s))

add memo time complexity to O(n^2):

class Solution:
    def longestPalindromeSubseq(self, s: str) -> int:
        return self.helper(0, len(s) - 1, s, {})
    def helper(self, l, r, s, memo):
        if l == r:
            return 1
        if l > r:
            return 0
        if (l, r) in memo:
            return memo[(l, r)]
        memo[(l, r)] = 2 + self.helper(l + 1, r - 1, s, memo) if s[l] == s[r] else max(self.helper(l + 1, r, s, memo), self.helper(l, r - 1, s, memo))
        return memo[(l, r)]

dp:

class Solution:
    def longestPalindromeSubseq(self, s: str) -> int:
        n = len(s)
        dp = [[0] * n for _ in range(n)]
        for i in range(n - 1, -1, -1):
            dp[i][i] = 1
            for j in range(i + 1, n):
                if s[i] == s[j]:
                    dp[i][j] = dp[i + 1][j - 1] + 2
                else:
                    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])
        return dp[0][-1]

面经:维萨
Subsequence is not substring. Every sub string is a sub sequence
e.g. leetcode
Both substring and subsequence leet, code
Sub sequence ltcode, eecode, ecode, ltde // and not substring
dp:从 i 到 j, dp[i][i] = 1, i从最后一个开始,j从i+1开始,构建斜上半个dpmatrix, 如果s[i] == s[j]: dp[i][j] = dp[i + 1][j - 1] + 2 else: dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])

300. Longest Increasing Subsequence (Medium)

Given an unsorted array of integers, find the length of longest increasing subsequence.

Example:
Input: [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Note:

There may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?

DP: O(n^2):

class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        n = len(nums)
        f = [1] * n
        for i in range(n):
            for j in range(i):
                if nums[i] > nums[j] and f[i] < f[j] + 1:
                    f[i] = f[j] + 1
        return max(f)

2刷:面经:Amazon。这个youtube视频讲的不错还有其他解法,应该超纲了

1143. Longest Common Subsequence (Medium)

Given two strings text1 and text2, return the length of their longest common subsequence.
A subsequence of a string is a new string generated from the original string with some characters(can be none) deleted without changing the relative order of the remaining characters. (eg, "ace" is a subsequence of "abcde" while "aec" is not). A common subsequence of two strings is a subsequence that is common to both strings.
If there is no common subsequence, return 0.

Example 1:
Input: text1 = "abcde", text2 = "ace"
Output: 3
Explanation: The longest common subsequence is "ace" and its length is 3.

Example 2:
Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.

Example 3:
Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.

Constraints:
1 <= text1.length <= 1000
1 <= text2.length <= 1000
The input strings consist of lowercase English characters only.

class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        m, n = len(text1), len(text2)
        dp = [[0] * (n + 1) for _ in range(m + 1)]
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if text1[i - 1] == text2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1] + 1
                else:
                    dp[i][j] = max(dp[i][j - 1], dp[i - 1][j])
        return dp[m][n]

Blind 75:todo: 系列题讲解还有可以输出具体LCS的代码

1027. Longest Arithmetic Sequence (Medium)

Given an array A of integers, return the length of the longest arithmetic subsequence in A.
Recall that a subsequence of A is a list A[i_1], A[i_2], ..., A[i_k] with 0 <= i_1 < i_2 < ... < i_k <= A.length - 1, and that a sequence B is arithmetic if B[i+1] - B[i] are all the same value (for 0 <= i < B.length - 1).

Example 1:
Input: [3,6,9,12]
Output: 4
Explanation:
The whole array is an arithmetic sequence with steps of length = 3.

Example 2:
Input: [9,4,7,2,10]
Output: 3
Explanation:
The longest arithmetic subsequence is [4,7,10].

Example 3:
Input: [20,1,15,3,10,5,8]
Output: 4
Explanation:
The longest arithmetic subsequence is [20,15,10,5].

Note:
2 <= A.length <= 2000
0 <= A[i] <= 10000

class Solution:
    def longestArithSeqLength(self, A: List[int]) -> int:
        dp = {}
        for i in range(len(A) - 1):
            for j in range(i + 1, len(A)):
                dp[j, A[j] - A[i]] = dp.get((i, A[j] - A[i]), 1) + 1
        return max(dp.values())

一刷:Facebook tag

221. Maximal Square (Medium)

Given an m x n binary matrix filled with 0's and 1's, find the largest square containing only 1's and return its area.

Example 1:
<img src="https://assets.leetcode.com/uploads/2020/11/26/max1grid.jpg" alt="matrix example1" class="responsive-image">
Input: matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
Output: 4

Example 2:
<img src="https://assets.leetcode.com/uploads/2020/11/26/max1grid.jpg" alt="matrix example2" class="responsive-image">
Input: matrix = [["0","1"],["1","0"]]
Output: 1

Example 3:
Input: matrix = [["0"]]
Output: 0

Constraints:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 300
matrix[i][j] is '0' or '1'.

暴力:

class Solution:
    def maximalSquare(self, matrix: List[List[str]]) -> int:
        m, n = len(matrix), len(matrix[0])
        ans = 0
        for r in range(m):
            for c in range(n):
                if matrix[r][c] == "1":
                    tr, tc = r, c
                    cur = 1
                    while tr < m - 1 and tc < n - 1:
                        tr += 1
                        tc += 1
                        if all(matrix[tr][nc] == '1' for nc in range(c, tc + 1)) and all(matrix[nr][tc] == '1' for nr in range(r, tr + 1)):
                            cur += 1
                        else:
                            break
                    ans = max(ans, cur)
        return ans * ans

DP space: O(m*n):

class Solution:
    def maximalSquare(self, matrix: List[List[str]]) -> int:
        m, n = len(matrix), len(matrix[0])
        ans = 0
        f = [[0] * (n + 1) for _ in range(m + 1)]
        for r in range(m):
            for c in range(n):
                if matrix[r][c] == "1":
                    f[r + 1][c + 1] = min(f[r][c], f[r + 1][c], f[r][c + 1]) + 1
                    ans = max(ans, f[r + 1][c + 1])
        return ans * ans

DP space: O(n):

class Solution:
    def maximalSquare(self, matrix: List[List[str]]) -> int:
        m, n = len(matrix), len(matrix[0])
        ans = pre = 0
        f = [0] * (n + 1)
        for r in range(m):
            for c in range(n):
                tmp = f[c + 1]
                if matrix[r][c] == "1":
                    f[c + 1] = min(f[c], f[c + 1], pre) + 1
                    ans = max(ans, f[c + 1])
                    pre = tmp
                else:
                    f[c + 1] = 0
        return ans * ans

1刷,高频。 时间复杂度: 暴力: O((mn)^2) DP:O(mn) 空间:暴力: O(1)

背包问题

322. Coin Change (Medium)

You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.

Example 1:
Input: coins = [1, 2, 5], amount = 11
Output: 3
Explanation: 11 = 5 + 5 + 1

Example 2:
Input: coins = [2], amount = 3
Output: -1

Note:
You may assume that you have an infinite number of each kind of coin.

DP:

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        dp = [float('inf')] * (amount + 1)
        dp[0] = 0
        for a in range(1, amount + 1):
            for coin in coins:
                if a >= coin:
                    dp[a] = min(dp[a], dp[a - coin] + 1)
        return dp[-1] if dp[-1] != float('inf') else -1

BFS:

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        if amount == 0:
            return 0
        q = [0]
        ans = 0
        seen = set()
        while q:
            ans += 1
            nq = []
            for cur in q:
                for coin in coins:
                    reach = cur + coin
                    if reach == amount:
                        return ans
                    if reach < amount and reach not in seen:
                        seen.add(reach)
                        nq.append(reach)
            q = nq
        return -1

Blind 75; 面经: Cruise,维萨

518. Coin Change 2 (Medium)

You are given an integer array coins representing coins of different denominations and an integer amount representing a total amount of money.

Return the number of combinations that make up that amount. If that amount of money cannot be made up by any combination of the coins, return 0.

You may assume that you have an infinite number of each kind of coin.

The answer is guaranteed to fit into a signed 32-bit integer.

Example 1:
Input: amount = 5, coins = [1,2,5]
Output: 4
Explanation: there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

Example 2:
Input: amount = 3, coins = [2]
Output: 0
Explanation: the amount of 3 cannot be made up just with coins of 2.

Example 3:
Input: amount = 10, coins = [10]
Output: 1

Constraints:
1 <= coins.length <= 300
1 <= coins[i] <= 5000
All the values of coins are unique.
0 <= amount <= 5000

O(m*n)空间

class Solution:
    def change(self, amount: int, coins: List[int]) -> int:
        f = [[0] * (amount + 1) for _ in range(len(coins) + 1)]
        f[0][0] = 1
        for i in range(1, len(coins) + 1):
            f[i][0] = 1
            for j in range(1, amount + 1):
                if j < coins[i - 1]:
                    f[i][j] = f[i - 1][j]
                else:
                    f[i][j] = f[i - 1][j] + f[i][j - coins[i - 1]]
        return f[-1][-1]

O(n)空间

class Solution:
    def change(self, amount: int, coins: List[int]) -> int:
        f = [0] * (amount + 1)
        f[0] = 1
        for c in coins:
            for j in range(c, amount + 1):
                f[j] += f[j - c]
        return f[-1]

高频

474. Ones and Zeroes (Medium)

In the computer world, use restricted resource you have to generate maximum benefit is what we always want to pursue.
For now, suppose you are a dominator of m 0s and n 1s respectively. On the other hand, there is an array with strings consisting of only 0s and 1s.
Now your task is to find the maximum number of strings that you can form with given m 0s and n 1s. Each 0 and 1 can be used at most once.
Note:
The given numbers of 0s and 1s will both not exceed 100
The size of given string array won't exceed 600.

Example 1:
Input: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3
Output: 4
Explanation: This are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are “10,”0001”,”1”,”0”

Example 2:
Input: Array = {"10", "0", "1"}, m = 1, n = 1
Output: 2
Explanation: You could form "10", but then you'd have nothing left. Better form "0" and "1".
Bruteforce:

class Solution:
    def findMaxForm(self, strs: List[str], m: int, n: int) -> int:
            return self.helper(strs, m, n, 0, collections.defaultdict(dict))
        def helper(self, strs, m, n, idx, memo):
            if m in memo and n in memo[m] and idx in memo[m][n]:
                return memo[m][n][idx]
            memo.setdefault(m, {}).setdefault(n, {})[idx] = 0
            for i in range(idx, len(strs)):
                zeros, ones = strs[i].count('0'), strs[i].count('1')
                if zeros <= m and ones <= n:
                    memo[m][n][idx] = max(memo[m][n][idx], self.helper(strs, m - zeros, n - ones, i + 1, memo) + 1)
            return memo[m][n][idx]

DP:

class Solution:
    def findMaxForm(self, strs: List[str], m: int, n: int) -> int:
        dp = [[[0] * (n + 1) for _ in range(m + 1)] for _ in range(len(strs) + 1)]
        for i in range(1, len(strs) + 1):
            zeros, ones = strs[i - 1].count('0'), strs[i - 1].count('1')
            for j in range(m + 1):
                for k in range(n + 1):
                    if j >= zeros and k >= ones:
                        dp[i][j][k] = max(dp[i - 1][j][k], dp[i - 1][j - zeros][k - ones] + 1)
                    else:
                        dp[i][j][k] = dp[i - 1][j][k]
        return dp[-1][-1][-1]

面经:Cruise。可惜两种方法都过不了python3的oj

416. Partition Equal Subset Sum (Medium)

Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.

Note:
Each of the array element will not exceed 100.
The array size will not exceed 200.

Example 1:
Input: [1, 5, 11, 5]
Output: true
Explanation: The array can be partitioned as [1, 5, 5] and [11].

Example 2:
Input: [1, 2, 3, 5]
Output: false
Explanation: The array cannot be partitioned into equal sum subsets.

class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        target = sum(nums)
        if target % 2 != 0:
            return False
        target //= 2
        if max(nums) > target:
            return False
        dp = [[False] * (target + 1) for _ in range(len(nums) + 1)]
        dp[0][0] = True
        for i in range(1, len(nums) + 1):
            dp[i][0] = True
        for j in range(1, target + 1):
            dp[0][j] = False
        for i in range(1, len(nums) + 1):
            for j in range(1, target + 1):
                dp[i][j] = dp[i - 1][j]
                if j >= nums[i - 1]:
                    dp[i][j] = dp[i - 1][j] or dp[i - 1][j - nums[i - 1]]
        return dp[-1][-1]

面经:Cruise。dp为从前i个序列中是否能有组成和为j的组合,要么用i - 1,要么不用i - 1,用的话那么取决于dp[i - 1][j - nums[i -1]]

Recursion 递归 / Backtracking

13. Roman to Integer (Easy)

Roman numerals are represented by seven different symbols: I, V, X, L, C, D and M.

Symbol       Value
I             1
V             5
X             10
L             50
C             100
D             500
M             1000
For example, two is written as II in Roman numeral, just two one's added together. Twelve is written as, XII, which is simply X + II. The number twenty seven is written as XXVII, which is XX + V + II.

Roman numerals are usually written largest to smallest from left to right. However, the numeral for four is not IIII. Instead, the number four is written as IV. Because the one is before the five we subtract it making four. The same principle applies to the number nine, which is written as IX. There are six instances where subtraction is used:

I can be placed before V (5) and X (10) to make 4 and 9.
X can be placed before L (50) and C (100) to make 40 and 90.
C can be placed before D (500) and M (1000) to make 400 and 900.
Given a roman numeral, convert it to an integer. Input is guaranteed to be within the range from 1 to 3999.

Example 1:

Input: "III"
Output: 3
Example 2:

Input: "IV"
Output: 4
Example 3:

Input: "IX"
Output: 9
Example 4:

Input: "LVIII"
Output: 58
Explanation: L = 50, V= 5, III = 3.
Example 5:

Input: "MCMXCIV"
Output: 1994
Explanation: M = 1000, CM = 900, XC = 90 and IV = 4.

遍历:

class Solution:
    def romanToInt(self, s: str) -> int:
        d = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100,  'D': 500,'M': 1000}
        ans = 0
        i = 0
        while i < len(s):
            if i < len(s) - 1 and d[s[i]] < d[s[i + 1]]:
                ans -= d[s[i]]
            else:
                ans += d[s[i]]
            i += 1
        return ans

递归:

class Solution:
    def romanToInt(self, s: str) -> int:
        d = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100,  'D': 500,'M': 1000}        
        if not s:
            return 0
        if len(s) == 1:
            return d[s]
        first, second = d[s[0]], d[s[1]]
        if first < second:
            return second - first + self.romanToInt(s[2:])
        else:
            return first + self.romanToInt(s[1:])

3刷:高频

50. Pow(x, n) (Medium)

Implement pow(x, n), which calculates x raised to the power n (xn).

Example 1:

Input: 2.00000, 10
Output: 1024.00000
Example 2:

Input: 2.10000, 3
Output: 9.26100
Example 3:

Input: 2.00000, -2
Output: 0.25000
Explanation: 2-2 = 1/22 = 1/4 = 0.25
Note:

-100.0 < x < 100.0
n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution:
    def myPow(self, x: float, n: int) -> float:
        def helper(x, n):
            if n == 0:
                return 1
            res = helper(x, n // 2)
            return res * res if n % 2 == 0 else x * res * res
        return helper(x, n) if n > 0 else 1 / helper(x, -n)

2刷:高频

4. Median of Two Sorted Arrays (Hard)

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

You may assume nums1 and nums2 cannot be both empty.

Example 1:

nums1 = [1, 3]
nums2 = [2]

The median is 2.0
Example 2:

nums1 = [1, 2]
nums2 = [3, 4]

The median is (2 + 3)/2 = 2.5
class Solution:
    def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
        if not nums1 and not nums2:
            return 0
        m, n = len(nums1), len(nums2)
        def findK(a, b, k):
            if not a:
                return b[k]
            if not b:
                return a[k]
            ai, bi = len(a) // 2, len(b) // 2
            am, bm = a[ai], b[bi]
            if k > ai + bi:
                if am < bm:
                    return findK(a[ai + 1:], b, k - ai - 1)
                else:
                    return findK(a, b[bi + 1:], k - bi - 1)
            else:
                if am > bm:
                    return findK(a[:ai], b, k)
                else:
                    return findK(a, b[:bi], k)
        if (m + n) % 2 == 0:
            return findK(nums1, nums2, (m + n) // 2) * 0.5 + findK(nums1, nums2, (m + n) //2 - 1) * 0.5
        else:
            return findK(nums1, nums2, (m + n) // 2)

高频:总长度是奇偶数分开做,...def findK(a, b, k):...if...:...return findK(a[ai + 1:], b, k - ai - 1)...

Bit Manipulation

231. Power of Two (Easy)

Given an integer, write a function to determine if it is a power of two.

Example 1:

Input: 1
Output: true
Explanation: 2^0 = 1
Example 2:

Input: 16
Output: true
Explanation: 2^4 = 16
Example 3:

Input: 218
Output: false

思路:既然是 bit manipulation 的题,肯定是变成 bits 操作,稍微看一下 2 的倍数都是 1 后面全是 0。怎么用 python 检查这个比较没思路。。。

class Solution:
    def isPowerOfTwo(self, n):
        """
        :type n: int
        :rtype: bool
        """
        if n == 1:
            return True
        return bin(n)[2:] == '1'.ljust(len(bin(n)) - 2, '0')

总结:看了三年前比较屌的 trick 是 return n & n - 1, 当然 bin 这种土办法也 OK 的。

29. Divide Two Integers (Medium)

Given two integers dividend and divisor, divide two integers without using multiplication, division and mod operator.

Return the quotient after dividing dividend by divisor.

The integer division should truncate toward zero.

Example 1:

Input: dividend = 10, divisor = 3
Output: 3
Example 2:

Input: dividend = 7, divisor = -3
Output: -2
Note:

Both dividend and divisor will be 32-bit signed integers.
The divisor will never be 0.
Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−231,  231 − 1]. For the purpose of this problem, assume that your function returns 231 − 1 when the division result overflows.
class Solution:
    def divide(self, dividend: int, divisor: int) -> int:
        sign = 1 if (dividend > 0) == (divisor > 0) else -1
        dividend, divisor = abs(dividend), abs(divisor)
        res = 0
        while dividend >= divisor:
            t, i = divisor, 1
            while dividend >= t:
                dividend -= t
                res += i
                t <<= 1
                i <<= 1
        return min(max(res * sign, -2 ** 31), 2 ** 31 - 1)

2刷:高频

89. Gray Code (Medium)

The gray code is a binary numeral system where two successive values differ in only one bit.

Given a non-negative integer n representing the total number of bits in the code, print the sequence of gray code. A gray code sequence must begin with 0.

Example 1:

Input: 2
Output: [0,1,3,2]
Explanation:
00 - 0
01 - 1
11 - 3
10 - 2

For a given n, a gray code sequence may not be uniquely defined.
For example, [0,2,3,1] is also a valid gray code sequence.

00 - 0
10 - 2
11 - 3
01 - 1
Example 2:

Input: 0
Output: [0]
Explanation: We define the gray code sequence to begin with 0.
             A gray code sequence of n has size = 2n, which for n = 0 the size is 20 = 1.
             Therefore, for n = 0 the gray code sequence is [0].
class Solution:
    def grayCode(self, n: int) -> List[int]:
        ans = [0]
        for i in range(n):
            ans += [x + pow(2, i) for x in reversed(ans)]
        return ans

高频:这道题无面试意义,考点在于知道格雷码的镜像性质

Multi-threading 多线程

1114. Print in Order (Easy)

Suppose we have a class:

public class Foo {
  public void first() { print("first"); }
  public void second() { print("second"); }
  public void third() { print("third"); }
}

The same instance of Foo will be passed to three different threads. Thread A will call first(), thread B will call second(), and thread C will call third(). Design a mechanism and modify the program to ensure that second() is executed after first(), and third() is executed after second().

Example 1:
Input: [1,2,3]
Output: "firstsecondthird"
Explanation: There are three threads being fired asynchronously. The input [1,2,3] means thread A calls first(), thread B calls second(), and thread C calls third(). "firstsecondthird" is the correct output.

Example 2:
Input: [1,3,2]
Output: "firstsecondthird"
Explanation: The input [1,3,2] means thread A calls first(), thread B calls third(), and thread C calls second(). "firstsecondthird" is the correct output.

Note:
We do not know how the threads will be scheduled in the operating system, even though the numbers in the input seems to imply the ordering. The input format you see is mainly to ensure our tests' comprehensiveness.

class Foo:
    def __init__(self):
        import threading
        self.barrier1 = threading.Barrier(2)
        self.barrier2 = threading.Barrier(2)

    def first(self, printFirst: 'Callable[[], None]') -> None:
        printFirst()
        self.barrier1.wait()

    def second(self, printSecond: 'Callable[[], None]') -> None:
        self.barrier1.wait()
        printSecond()
        self.barrier2.wait()

    def third(self, printThird: 'Callable[[], None]') -> None:
        self.barrier2.wait()
        printThird()

一刷:Lock, Event, Semaphore或Condition也可以解。这篇讨论帖很好

1115. Print FooBar Alternately (Medium)

Suppose you are given the following code:

class FooBar {
  public void foo() {
    for (int i = 0; i < n; i++) {
      print("foo");
    }
  }
  public void bar() {
    for (int i = 0; i < n; i++) {
      print("bar");
    }
  }
}

The same instance of FooBar will be passed to two different threads. Thread A will call foo() while thread B will call bar(). Modify the given program to output "foobar" n times.

Example 1:
Input: n = 1
Output: "foobar"
Explanation: There are two threads being fired asynchronously. One of them calls foo(), while the other calls bar(). "foobar" is being output 1 time.

Example 2:
Input: n = 2
Output: "foobarfoobar"
Explanation: "foobar" is being output 2 times.
class FooBar:
    def __init__(self, n):
        import threading
        self.n = n
        self.fooLock = threading.Lock()
        self.barLock = threading.Lock()
        self.fooLock.acquire()

    def foo(self, printFoo: 'Callable[[], None]') -> None:
        for i in range(self.n):
            self.barLock.acquire()
            printFoo()
            self.fooLock.release()


    def bar(self, printBar: 'Callable[[], None]') -> None:
        for i in range(self.n):
            self.fooLock.acquire()
            printBar()
            self.barLock.release()

一刷:Barrier, Condition, Event, Semaphore也可以解

1116. Print Zero Even Odd (Medium)

Suppose you are given the following code:

class ZeroEvenOdd {
  public ZeroEvenOdd(int n) { ... }      // constructor
  public void zero(printNumber) { ... }  // only output 0's
  public void even(printNumber) { ... }  // only output even numbers
  public void odd(printNumber) { ... }   // only output odd numbers
}

The same instance of ZeroEvenOdd will be passed to three different threads:
Thread A will call zero() which should only output 0's.
Thread B will call even() which should only ouput even numbers.
Thread C will call odd() which should only output odd numbers.
Each of the threads is given a printNumber method to output an integer. Modify the given program to output the series 010203040506... where the length of the series must be 2n.

Example 1:
Input: n = 2
Output: "0102"
Explanation: There are three threads being fired asynchronously. One of them calls zero(), the other calls even(), and the last one calls odd(). "0102" is the correct output.

Example 2:
Input: n = 5
Output: "0102030405"

class ZeroEvenOdd:
    def __init__(self, n):
        import threading
        self.n = n
        self.cur = 0
        self.semas = [threading.Semaphore() for _ in range(3)]
        self.semas[0].acquire()
        self.semas[1].acquire()

    # printNumber(x) outputs "x", where x is an integer.
    def zero(self, printNumber: 'Callable[[int], None]') -> None:
        for _ in range(self.n):
            self.semas[2].acquire()
            printNumber(0)
            self.cur += 1
            self.semas[self.cur % 2].release()

    def even(self, printNumber: 'Callable[[int], None]') -> None:
        for _ in range(self.n // 2):
            self.semas[0].acquire()
            printNumber(self.cur)
            self.semas[2].release()

    def odd(self, printNumber: 'Callable[[int], None]') -> None:
        for _ in range((self.n + 1) // 2):
            self.semas[1].acquire()
            printNumber(self.cur)
            self.semas[2].release()

一刷

1117. Building H2O (Medium)

There are two kinds of threads, oxygen and hydrogen. Your goal is to group these threads to form water molecules. There is a barrier where each thread has to wait until a complete molecule can be formed. Hydrogen and oxygen threads will be given releaseHydrogen and releaseOxygen methods respectively, which will allow them to pass the barrier. These threads should pass the barrier in groups of three, and they must be able to immediately bond with each other to form a water molecule. You must guarantee that all the threads from one molecule bond before any other threads from the next molecule do.

In other words:
If an oxygen thread arrives at the barrier when no hydrogen threads are present, it has to wait for two hydrogen threads.
If a hydrogen thread arrives at the barrier when no other threads are present, it has to wait for an oxygen thread and another hydrogen thread.
We don’t have to worry about matching the threads up explicitly; that is, the threads do not necessarily know which other threads they are paired up with. The key is just that threads pass the barrier in complete sets; thus, if we examine the sequence of threads that bond and divide them into groups of three, each group should contain one oxygen and two hydrogen threads.

Write synchronization code for oxygen and hydrogen molecules that enforces these constraints.

Example 1:
Input: "HOH"
Output: "HHO"
Explanation: "HOH" and "OHH" are also valid answers.

Example 2:
Input: "OOHHHH"
Output: "HHOHHO"
Explanation: "HOHHHO", "OHHHHO", "HHOHOH", "HOHHOH", "OHHHOH", "HHOOHH", "HOHOHH" and "OHHOHH" are also valid answers.

Constraints:
Total length of input string will be 3n, where 1 ≤ n ≤ 20.
Total number of H will be 2n in the input string.
Total number of O will be n in the input string.

class H2O:
    def __init__(self):
        import threading
        self.H = 0
        self.O = 0
        self.lock = threading.Lock()

    def hydrogen(self, releaseHydrogen: 'Callable[[], None]') -> None:
        with self.lock:
            self.releaseH = releaseHydrogen
            self.H += 1
            self.helper()

    def oxygen(self, releaseOxygen: 'Callable[[], None]') -> None:
        with self.lock:
            self.releaseO = releaseOxygen
            self.O += 1
            self.helper()

    def helper(self):
        if self.H >= 2 and self.O >= 1:
            self.releaseH()
            self.releaseH()
            self.releaseO()
            self.H -= 2
            self.O -= 1

一刷

Misc 杂类型,偏门/特殊算法

7. Reverse Integer (Easy)

Given a 32-bit signed integer, reverse digits of an integer.

Example 1:

Input: 123
Output: 321
Example 2:

Input: -123
Output: -321
Example 3:

Input: 120
Output: 21
Note:
Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−231,  231 − 1]. For the purpose of this problem, assume that your function returns 0 when the reversed integer overflows.

高频

class Solution:
    def reverse(self, x: int) -> int:
        if x == 0:
            return 0
        if x > 0:
            sign = 1
        else:
            sign = -1
            x = -x
        ans = 0
        while x:
            ans = ans * 10 + x % 10
            x //= 10
        if (sign == 1 and ans > pow(2, 31) - 1) or (sign == -1 and ans > pow(2, 31)):
            return 0
        return sign * ans

总结:...while x:...ans = ans * 10 + x % 10。转成字符串[::-1]是更优解

31. Next Permutation (Medium)

Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers.

If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order).

The replacement must be in-place and use only constant extra memory.

Here are some examples. Inputs are in the left-hand column and its corresponding outputs are in the right-hand column.

1,2,3 → 1,3,2
3,2,1 → 1,2,3
1,1,5 → 1,5,1
class Solution:
    def nextPermutation(self, nums: List[int]) -> None:
        n = len(nums)
        #find pivot
        pivot = -1
        for i in range(n - 1, 0, -1):
            if nums[i - 1] < nums[i]:
                pivot = i - 1
                break
        def reverse(l, r):
            while l < r:
                nums[l], nums[r] = nums[r], nums[l]
                l += 1
                r -= 1
        if pivot == -1:
            reverse(0, n - 1)
            return
        #find rightmost > element in surfix and swap
        for i in range(n - 1, pivot, -1):
            if nums[i] > nums[pivot]:
                rightmostI = i
                break
        nums[pivot], nums[rightmostI] = nums[rightmostI], nums[pivot]
        #reverse surfix
        reverse(pivot + 1, n - 1)

高频,面经:维萨。lexicographical顺序的下一个排列算法描述,删去基于十四世纪的一个算法代码。知识型的不适合面试。

60. Permutation Sequence (Medium)

The set [1,2,3,...,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order, we get the following sequence for n = 3:

"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.

Note:

Given n will be between 1 and 9 inclusive.
Given k will be between 1 and n! inclusive.
Example 1:

Input: n = 3, k = 3
Output: "213"
Example 2:

Input: n = 4, k = 9
Output: "2314"
class Solution:
    def getPermutation(self, n: int, k: int) -> str:
        nums = [i + 1 for i in range(n)]
        ans = ""
        while len(nums) > 1:
            import math
            nf = math.factorial(n - 1)
            i = (k - 1) // nf
            k = (k - 1) % nf + 1
            n -= 1
            ans += str(nums.pop(i))
        ans += str(nums.pop())
        return ans

高频:和上题一样无语。讨论区的python答案都不太行,提交结果里的高频可以。...while len(el) > 1:...i = (k - 1) // nf; k = (k - 1) % nf + 1...

84. Largest Rectangle in Histogram (Hard)

Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
histogram example
Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].
largetst rectangle example
The largest rectangle is shown in the shaded area, which has area = 10 unit.

Example:
Input: [2,1,5,6,2,3]
Output: 10

class Solution:
    def largestRectangleArea(self, heights: List[int]) -> int:
        ans = 0
        stack = []
        heights.append(0)
        for i, h in enumerate(heights):
            while stack and h < heights[stack[-1]]:
                maxH = heights[stack.pop()]
                w = i if not stack else i - stack[-1] - 1
                ans = max(ans, w * maxH)
            stack.append(i)
        return ans

单调栈;NeetCode的油管视频讲解算法

42. Trapping Rain Water (Hard)

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
trapping rain water example
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!

Example:
Input: [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6

单调栈:

class Solution:
    def trap(self, height: List[int]) -> int:
        ans = 0
        stack = []
        for i, h in enumerate(height):
            while stack and h > height[stack[-1]]:
                s_top = stack.pop()
                if not stack:
                    break
                w = i - stack[-1] - 1
                b_h = min(h, height[stack[-1]]) - height[s_top]
                ans += w * b_h
            stack.append(i)
        return ans

写法2:

class Solution:
    def trap(self, height: List[int]) -> int:
        n = len(height)
        maxL = [0] * n
        maxLSoFar = 0
        for i, h in enumerate(height):
            if h > maxLSoFar:
                maxLSoFar = h
            maxL[i] = maxLSoFar
        maxR = [0] * n
        maxRSoFar = 0
        for i in range(n - 1, -1, -1):
            if height[i] > maxRSoFar:
                maxRSoFar = height[i]
            maxR[i] = maxRSoFar
        ans = 0
        for i, h in enumerate(height):
            ans += min(maxL[i], maxR[i]) - h if min(maxL[i], maxR[i]) - h else 0
        return ans

732. My Calendar III (Hard)

Implement a MyCalendarThree class to store your events. A new event can always be added.
Your class will have one method, book(int start, int end). Formally, this represents a booking on the half open interval [start, end), the range of real numbers x such that start <= x < end.
A K-booking happens when K events have some non-empty intersection (ie., there is some time that is common to all K events.)
For each call to the method MyCalendar.book, return an integer K representing the largest integer such that there exists a K-booking in the calendar.
Your class will be called like this: MyCalendarThree cal = new MyCalendarThree(); MyCalendarThree.book(start, end)

Example 1:
MyCalendarThree();
MyCalendarThree.book(10, 20); // returns 1
MyCalendarThree.book(50, 60); // returns 1
MyCalendarThree.book(10, 40); // returns 2
MyCalendarThree.book(5, 15); // returns 3
MyCalendarThree.book(5, 10); // returns 3
MyCalendarThree.book(25, 55); // returns 3
Explanation:
The first two events can be booked and are disjoint, so the maximum K-booking is a 1-booking.
The third event [10, 40) intersects the first event, and the maximum K-booking is a 2-booking.
The remaining events cause the maximum K-booking to be only a 3-booking.
Note that the last event locally causes a 2-booking, but the answer is still 3 because
eg. [10, 20), [10, 40), and [5, 15) are still triple booked.

Note:
The number of calls to MyCalendarThree.book per test case will be at most 400.
In calls to MyCalendarThree.book(start, end), start and end are integers in the range [0, 10^9].

class MyCalendarThree:
    def __init__(self):
        self.meetings = []
    def book(self, start: int, end: int) -> int:
        from bisect import insort
        insort(self.meetings, (start, 1))
        insort(self.meetings, (end, -1))
        cumsum = 0
        res = 0
        for _, x in self.meetings:
            cumsum += x
            res = max(cumsum, res)
        return res

一刷:开始+1, 结束-1, 统计遍历中最大值的方法很巧妙

38. Count and Say (Medium)

The count-and-say sequence is a sequence of digit strings defined by the recursive formula:

countAndSay(1) = "1"
countAndSay(n) is the way you would "say" the digit string from countAndSay(n-1), which is then converted into a different digit string.
To determine how you "say" a digit string, split it into the minimal number of groups so that each group is a contiguous section all of the same character. Then for each group, say the number of characters, then say the character. To convert the saying into a digit string, replace the counts with a number and concatenate every saying.

For example, the saying and conversion for digit string "3322251":
example image 38
Given a positive integer n, return the nth term of the count-and-say sequence.

Example 1:
Input: n = 1
Output: "1"
Explanation: This is the base case.

Example 2:
Input: n = 4
Output: "1211"
Explanation:
countAndSay(1) = "1"
countAndSay(2) = say "1" = one 1 = "11"
countAndSay(3) = say "11" = two 1's = "21"
countAndSay(4) = say "21" = one 2 + one 1 = "12" + "11" = "1211"

Constraints:
1 <= n <= 30

写法1:

class Solution:
    def countAndSay(self, n: int) -> str:
        def process():
            nonlocal ans
            res = ""
            i = 0
            cnt = 0
            while i < len(ans):
                c = ans[i]
                while i < len(ans) and ans[i] == c:
                    i += 1
                    cnt += 1
                res += str(cnt) + c
                cnt = 0
            ans = res
        ans = "1"
        for _ in range(n - 1):
            process()
        return ans

写法2:

class Solution:
    def countAndSay(self, n: int) -> str:
        def process():
            nonlocal ans
            res = ""
            num = ans[0]
            cnt = 0
            for c in ans:
                if c == num:
                    cnt += 1
                else:
                    res += str(cnt) + num
                    cnt = 1
                    num = c
            res += str(cnt) + num
            ans = res
        ans = "1"
        for _ in range(n - 1):
            process()
        return ans

高频

364. Nested List Weight Sum II (Medium) 带锁

Linc 905 Nested List Weight Sum II (Medium)
Given a nested list of integers, return the sum of all integers in the list weighted by their depth.

Each element is either an integer, or a list -- whose elements may also be integers or other lists.

Different from the previous question where weight is increasing from root to leaf, now the weight is defined from bottom up. i.e., the leaf level integers have weight 1, and the root level integers have the largest weight.

Example

Example 1:
Input: nestedList = [[1,1],2,[1,1]]
Output: 8
Explanation:
four 1's at depth 1, one 2 at depth 2

Example 2:
Input: nestedList = [1,[4,[6]]]
Output: 17
Explanation:
one 1 at depth 3, one 4 at depth 2, and one 6 at depth 1; 13 + 42 + 6*1 = 17

class Solution:
    """
    @param nestedList: a list of NestedInteger
    @return: the sum
    """
    def depthSumInverse(self, nestedList):
        def find_depth(arr, d):
            nonlocal m_d
            m_d = max(m_d, d)
            for it in arr:
                if not it.isInteger():
                    find_depth(it.getList(), d + 1)
        m_d = 0
        find_depth(nestedList, 1)
        def w_sum(arr, d):
            nonlocal ans
            for it in arr:
                if not it.isInteger():
                    w_sum(it.getList(), d - 1)
                else:
                    ans += it.getInteger() * d
        ans = 0
        w_sum(nestedList, m_d)
        return ans

高频

LinC 659 Encode and Decode Strings (Medium)

Description
Design an algorithm to encode a list of strings to a string. The encoded string is then sent over the network and is decoded back to the original list of strings.

Please implement encode and decode
Do not rely on any libraries, the purpose of this problem is to implement the "encode" and "decode" algorithms on your own

Example1
Input: ["lint","code","love","you"]
Output: ["lint","code","love","you"]
Explanation:
One possible encode method is: "lint:;code:;love:;you"

Example2
Input: ["we", "say", ":", "yes"]
Output: ["we", "say", ":", "yes"]
Explanation:
One possible encode method is: "we:;say:;:::;yes"

class Solution:
    """
    @param: strs: a list of strings
    @return: encodes a list of strings to a single string.
    """
    def encode(self, strs):
        ans = ''
        for s in strs:
            ans += f"{len(s)}:{s}"
        return ans

    """
    @param: str: A string
    @return: decodes a single string to a list of strings
    """
    def decode(self, str):
        i = 0
        ans = []
        while i < len(str):
            separator_i = str.index(':', i)
            s_len = int(str[i:separator_i])
            ans.append(str[separator_i + 1:separator_i + 1 + s_len])
            i = separator_i + 1 + s_len
        return ans

Blind 75

非核心题

深度优先搜索

LinC 862. Next Closest Time (Medium)

Given a time represented in the format "HH:MM", form the next closest time by reusing the current digits. There is no limit on how many times a digit can be reused.
You may assume the given input string is always valid. For example, "01:34", "12:09" are all valid. "1:34", "12:9" are all invalid.

Example:
Given time = "19:34", return "19:39".
Explanation:
The next closest time choosing from digits 1, 9, 3, 4, is 19:39, which occurs 5 minutes later. It is not 19:33, because this occurs 23 hours and 59 minutes later.

Given time = "23:59", return "22:22".
Explanation:
The next closest time choosing from digits 2, 3, 5, 9, is 22:22. It may be assumed that the returned time is next day's time since it is smaller than the input time numerically.

class Solution:
    def nextClosestTime(self, time):
        s = set(time)
        if len(s) == 2:
            return time
        digits = time[0:2] + time[3:5]
        self.ans = ''
        self.minDiff = sys.maxsize
        self.target = int(time[0:2]) * 60 + int(time[3:5])
        self.dfs(digits, '', 0)
        return self.ans
    def dfs(self, digits, path, start):
        if start == 4:
            # path 产生了一个合法的时间,判断和 target 距离 diff 和 self.minDiff 的关系
            m = int(path[0:2]) * 60 + int(path[2:4])
            diff = m - self.target
            if diff == 0:
                return
            if diff < 0:
                diff = 24 * 60 + diff
            if diff < self.minDiff:
                self.minDiff = diff
                self.ans = path[0:2] + ':' + path[2:4]
            return
        for digit in digits:
            # 处理 path, 把不合适的时间都 continue 过去, 但是怎么判断现在处理的是哪个位置?看了下答案, 其实不需要 enumerate
            if start == 0 and int(digit) > 2:
                continue
            if start == 1 and int(path) * 10 + int(digit) > 23:
                continue
            if start == 2 and int(digit) > 5:
                continue
            if start == 3 and int(path[2:3]) * 10 + int(digit) > 59:
                continue
            self.dfs(digits, path + digit, start + 1)

总结:python3 把 sys.maxint 改成 sys.maxsize 了。要一次对的话,很多取数的细节需要留心。1.input time 要取 [0:2] [3:5] 来跳过 ':'; 2.diff 是负数的时候要用 24 * 60 + diff(而不是 -);3.for 循环里面的 digit 记得包上 int()

637. Average of Levels in Binary Tree (Easy)

Given a non-empty binary tree, return the average value of the nodes on each level in the form of an array.

Example 1:
Input:
    3
   / \
  9  20
    /  \
   15   7
Output: [3, 14.5, 11]

Explanation:
The average value of nodes on level 0 is 3, on level 1 is 14.5, and on level 2 is 11. Hence return [3, 14.5, 11].
Note:
The range of node's value is in the range of 32-bit signed integer.

class Solution:
    def averageOfLevels(self, root: TreeNode) -> List[float]:
        if not root:
            return []
        res = [[]]
        self.helper(root, res, 0)
        return [sum(x) / len(x) for x in res]
    def helper(self, root, res, depth):
        if not root:
            return
        if depth >= len(res):
            res.append([])
        res[depth].append(root.val)
        self.helper(root.left, res, depth + 1)
        self.helper(root.right, res, depth + 1)

一刷

270. Closest Binary Search Tree Value (Easy) 带锁

Linc 900. Closest Binary Search Tree Value (Easy)
Given a non-empty binary search tree and a target value, find the value in the BST that is closest to the target.
Given target value is a floating point.
You are guaranteed to have only one unique value in the BST that is closest to the target.

Example1
Input: root = {5,4,9,2,#,8,10} and target = 6.124780
Output: 5
Explanation:
Binary tree {5,4,9,2,#,8,10},  denote the following structure:
        5
       / \
     4    9
    /    / \
   2    8  10

Example2
Input: root = {3,2,4,1} and target = 4.142857
Output: 4
Explanation:
Binary tree {3,2,4,1},  denote the following structure:
     3
    / \
  2    4
 /
1
class Solution:
    def closestValue(self, root, target):
        self.ans = root.val
        self.helper(root, target)
        return self.ans
    def helper(self, root, target):
        if not root:
            return
        if abs(root.val - target) < abs(self.ans - target):
            self.ans = root.val
        if root.val > target:
            self.helper(root.left, target)
        elif root.val < target:
            self.helper(root.right, target)
        else:
            self.ans = root.val
            return

一刷

272. Closest Binary Search Tree Value II (Hard) 带锁

Linc 901. Closest Binary Search Tree Value II (Hard)
Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target.

Example 1:
Input:
{1}
0.000000
1
Output:
[1]
Explanation:
Binary tree {1},  denote the following structure:
 1

Example 2:
Input:
{3,1,4,#,2}
0.275000
2
Output:
[1,2]
Explanation:
Binary tree {3,1,4,#,2},  denote the following structure:
  3
 /  \
1    4
 \
  2

Challenge
Assume that the BST is balanced, could you solve it in less than O(n) runtime (where n = total nodes)?

Notice
Given target value is a floating point.
You may assume k is always valid, that is: k ≤ total nodes.
You are guaranteed to have only one unique set of k values in the BST that are closest to the target.

class Solution:
    def closestKValues(self, root, target, k):
        ans = []
        self.helper(root, target, k, ans)
        return [x[1] for x in ans]
    def helper(self, root, target, k, ans):
        if not root:
            return
        import heapq
        heapq.heappush(ans, (-abs(root.val - target), root.val))
        if len(ans) == k + 1:
            heapq.heappop(ans)
        self.helper(root.left, target, k, ans)
        self.helper(root.right, target, k, ans)

404. Sum of Left Leaves (Easy)

Find the sum of all left leaves in a given binary tree.

Example:
    3
   / \
  9  20
    /  \
   15   7

There are two left leaves in the binary tree, with values 9 and 15 respectively. Return 24.

class Solution:
    def sumOfLeftLeaves(self, root: TreeNode) -> int:
        if not root:
            return 0
        if root.left and not root.left.left and not root.left.right:
            return root.left.val + self.sumOfLeftLeaves(root.right)
        return self.sumOfLeftLeaves(root.left) + self.sumOfLeftLeaves(root.right)

一刷

653. Two Sum IV - Input is a BST (Easy)

Given a Binary Search Tree and a target number, return true if there exist two elements in the BST such that their sum is equal to the given target.

Example 1:
Input:
    5
   / \
  3   6
 / \   \
2   4   7

Target = 9
Output: True

Example 2:
Input:
    5
   / \
  3   6
 / \   \
2   4   7

Target = 28
Output: False

hash表/set方法:

class Solution:
    def findTarget(self, root: TreeNode, k: int) -> bool:
        if not root:
            return False
        seen = set()
        return self.helper(root, k, seen)
    def helper(self, root, k, seen):
        if not root:
            return False
        if k - root.val in seen:
            return True
        seen.add(root.val)
        return self.helper(root.left, k, seen) or self.helper(root.right, k, seen)

遍历BFS:

class Solution:
    def findTarget(self, root: TreeNode, k: int) -> bool:
        q = [root]
        seen = set()
        while q:
            for _ in range(len(q)):
                n = q.pop(0)
                if k - n.val in seen:
                    return True
                seen.add(n.val)
                if n.left:
                    q.append(n.left)
                if n.right:
                    q.append(n.right)
        return False

in-order/中序遍历双指针:

class Solution:
    def findTarget(self, root: TreeNode, k: int) -> bool:
        if not root:
            return False
        res = []
        self.inorder(root, res)
        i, j = 0, len(res) - 1
        while i < j:
            t = res[i] + res[j]
            if t == k:
                return True
            elif t < k:
                i += 1
            else:
                j -= 1
        return False
    def inorder(self, root, res):
        if not root:
            return
        self.inorder(root.left, res)
        res.append(root.val)
        self.inorder(root.right, res)

面经:Amazon。

655. Print Binary Tree (Medium)

Print a binary tree in an m*n 2D string array following these rules:

  1. The row number m should be equal to the height of the given binary tree.
  2. The column number n should always be an odd number.
  3. The root node's value (in string format) should be put in the exactly middle of the first row it can be put. The column and the row where the root node belongs will separate the rest space into two parts (left-bottom part and right-bottom part). You should print the left subtree in the left-bottom part and print the right subtree in the right-bottom part. The left-bottom part and the right-bottom part should have the same size. Even if one subtree is none while the other is not, you don't need to print anything for the none subtree but still need to leave the space as large as that for the other subtree. However, if two subtrees are none, then you don't need to leave space for both of them.
  4. Each unused space should contain an empty string "".
  5. Print the subtrees following the same rules.
Example 1:
Input:
     1
    /
   2
Output:
[["", "1", ""],
 ["2", "", ""]]

Example 2:
Input:
     1
    / \
   2   3
    \
     4
Output:
[["", "", "", "1", "", "", ""],
 ["", "2", "", "", "", "3", ""],
 ["", "", "4", "", "", "", ""]]

Example 3:
Input:
      1
     / \
    2   5
   /
  3
 /
4
Output:
[["",  "",  "", "",  "", "", "", "1", "",  "",  "",  "",  "", "", ""]
 ["",  "",  "", "2", "", "", "", "",  "",  "",  "",  "5", "", "", ""]
 ["",  "3", "", "",  "", "", "", "",  "",  "",  "",  "",  "", "", ""]
 ["4", "",  "", "",  "", "", "", "",  "",  "",  "",  "",  "", "", ""]]

Note: The height of binary tree is in the range of [1, 10].

class Solution:
    def printTree(self, root: TreeNode) -> List[List[str]]:
        h = self.maxDepth(root)
        w = 2 ** h - 1
        ans = [[""] * w for _ in range(h)]
        self.updateMatrix(root, ans, 0, 0, w - 1)
        return ans
    def maxDepth(self, root):
        if not root:
            return 0
        else:
            return 1 + max(self.maxDepth(root.left), self.maxDepth(root.right))
    def updateMatrix(self, root, ans, row, l, r):
        if not root or l > r:
            return
        mid = (l + r) // 2
        ans[row][mid] = str(root.val)
        self.updateMatrix(root.left, ans, row + 1, l, mid - 1)
        self.updateMatrix(root.right, ans, row + 1, mid + 1, r)

一刷:比较重要的insight是宽度是2 ** h - 1

701. Insert into a Binary Search Tree (Medium)

Given the root node of a binary search tree (BST) and a value to be inserted into the tree, insert the value into the BST. Return the root node of the BST after the insertion. It is guaranteed that the new value does not exist in the original BST.
Note that there may exist multiple valid ways for the insertion, as long as the tree remains a BST after insertion. You can return any of them.

For example,
Given the tree:
        4
       / \
      2   7
     / \
    1   3
And the value to insert: 5
You can return this binary search tree:
         4
       /   \
      2     7
     / \   /
    1   3 5
This tree is also valid:
         5
       /   \
      2     7
     / \
    1   3
         \
          4

递归:

class Solution:
    def insertIntoBST(self, root, val):
        if val > root.val:
            if root.right:
                self.insertIntoBST(root.right, val)
            else:
                root.right = TreeNode(val)
        if val < root.val:
            if root.left:
                self.insertIntoBST(root.left, val)
            else:
                root.left = TreeNode(val)
        return root

遍历:

class Solution:
    def insertIntoBST(self, root, val):
        n = TreeNode(val)
        cur = root
        while cur != n:
            if n.val > cur.val:
                if not cur.right:
                    cur.right = n
                cur = cur.right
            else:
                if not cur.left:
                    cur.left = n
                cur = cur.left
        return root

四刷:遍历:准备好数节点,遍历树直道cur和n相遇,如查到左或右该有此节点的地方不存在,即接上;有没有都往该方向走,

173. Binary Search Tree Iterator (Medium)

Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the root node of a BST.
Calling next() will return the next smallest number in the BST.

Example:
BST example

BSTIterator iterator = new BSTIterator(root);
iterator.next();    // return 3
iterator.next();    // return 7
iterator.hasNext(); // return true
iterator.next();    // return 9
iterator.hasNext(); // return true
iterator.next();    // return 15
iterator.hasNext(); // return true
iterator.next();    // return 20
iterator.hasNext(); // return false

Note:
next() and hasNext() should run in average O(1) time and uses O(h) memory, where h is the height of the tree.
You may assume that next() call will always be valid, that is, there will be at least a next smallest number in the BST when next() is called.

O(h)空间

class BSTIterator:
    def __init__(self, root: TreeNode):
        self.s = []
        self._inorderLeft(root)

    def next(self) -> int:
        res = self.s.pop()
        if res.right:
            self._inorderLeft(res.right)
        return res.val

    def hasNext(self) -> bool:
        return self.s 

    def _inorderLeft(self, root):
        while root:
            self.s.append(root)
            root = root.left

generator:

class BSTIterator:

    def __init__(self, root: Optional[TreeNode]):
        self.g = self._gen(root)
        self._advance()

    def next(self) -> int:
        res = self.b
        self._advance()
        return res.val

    def hasNext(self) -> bool:
        return self.b
    
    def _advance(self):
        try:
            self.b = next(self.g)
        except StopIteration:
            self.b = None
        
    def _gen(self, root):
        if not root:
            return
        yield from self._gen(root.left)
        yield root
        yield from self._gen(root.right)

3刷

1120. Maximum Average Subtree (Medium) 带锁

Given a binary tree, find the subtree with maximum average. Return the root of the subtree.

Example 1
Input:
{1,-5,11,1,2,4,-2}
Output:11
Explanation:
The tree is look like this:
     1
   /   \
 -5     11
 / \   /  \
1   2 4    -2
The average of subtree of 11 is 4.3333, is the maximun.

Example 2
Input:
{1,-5,11}
Output:11
Explanation:
     1
   /   \
 -5     11
The average of subtree of 1,-5,11 is 2.333,-5,11. So the subtree of 11 is the maximun.

Notice
LintCode will print the subtree which root is your return node.
It's guaranteed that there is only one subtree with maximum average.

class Solution:
    def findSubtree2(self, root):
        self.ans = (None, -sys.maxsize)
        self.helper(root)
        return self.ans[0]
    def helper(self, root):
        if not root:
            return 0, 0
        l, lCnt = self.helper(root.left)
        r, rCnt = self.helper(root.right)
        avg = (root.val + l * lCnt + r * rCnt) / (lCnt + rCnt + 1)
        if not self.ans[0] or avg > self.ans[1]:
            self.ans = (root, avg)
        return avg, lCnt + rCnt + 1

一刷

671. Second Minimum Node In a Binary Tree (Easy)

Given a non-empty special binary tree consisting of nodes with the non-negative value, where each node in this tree has exactly two or zero sub-node. If the node has two sub-nodes, then this node's value is the smaller value among its two sub-nodes. More formally, the property root.val = min(root.left.val, root.right.val) always holds.
Given such a binary tree, you need to output the second minimum value in the set made of all the nodes' value in the whole tree.
If no such second minimum value exists, output -1 instead.

Example 1:
Input:
    2
   / \
  2   5
     / \
    5   7
Output: 5
Explanation: The smallest value is 2, the second smallest value is 5.

Example 2:
Input:
    2
   / \
  2   2
Output: -1
Explanation: The smallest value is 2, but there isn't any second smallest value.
class Solution:
    def findSecondMinimumValue(self, root: TreeNode) -> int:
        self.ans = sys.maxsize
        self.smallest = root.val
        self.helper(root)
        return self.ans if self.ans < sys.maxsize else -1
    def helper(self, root):
        if not root:
            return
        if self.smallest < root.val < self.ans:
            self.ans = root.val
        self.helper(root.left)
        self.helper(root.right)

一刷:O(n) time, O(1) space, O(h) callstack

530. Minimum Absolute Difference in BST (Easy)

Given a binary search tree with non-negative values, find the minimum absolute difference between values of any two nodes.

Example:
Input:
   1
    \
     3
    /
   2
Output:
1
Explanation:
The minimum absolute difference is 1, which is the difference between 2 and 1 (or between 2 and 3).

Note: There are at least two nodes in this BST.

class Solution:
    def getMinimumDifference(self, root: TreeNode) -> int:
        self.pre = None
        self.ans = sys.maxsize
        self.inorder(root)
        return self.ans
    def inorder(self, root):
        if not root:
            return
        self.inorder(root.left)
        if self.pre:
            self.ans = min(self.ans, root.val - self.pre.val)
        self.pre = root
        self.inorder(root.right)

一刷

1008. Construct Binary Search Tree from Preorder Traversal (Medium)

Return the root node of a binary search tree that matches the given preorder traversal.
(Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.)

Example 1:
Input: [8,5,1,7,10,12]
Output: [8,5,10,1,7,null,12]
Construct Binary Search Tree from Preorder Traversal example

Note:
1 <= preorder.length <= 100
The values of preorder are distinct.

class Solution:
    def bstFromPreorder(self, preorder: List[int]) -> TreeNode:
        if not preorder:
            return
        root = TreeNode(preorder[0])
        if len(preorder) > 1:
            rIdxs = [i for i, v in enumerate(preorder) if v > preorder[0]]
            if not rIdxs:
                root.left = self.bstFromPreorder(preorder[1:])
            else:
                root.left = self.bstFromPreorder(preorder[1:rIdxs[0]])
                root.right = self.bstFromPreorder(preorder[rIdxs[0]:])
        return root

一刷:Facebook tag

987. Vertical Order Traversal of a Binary Tree (Medium)

Given a binary tree, return the vertical order traversal of its nodes values.
For each node at position (X, Y), its left and right children respectively will be at positions (X-1, Y-1) and (X+1, Y-1).
Running a vertical line from X = -infinity to X = +infinity, whenever the vertical line touches some nodes, we report the values of the nodes in order from top to bottom (decreasing Y coordinates).
If two nodes have the same position, then the value of the node that is reported first is the value that is smaller.
Return an list of non-empty reports in order of X coordinate. Every report will have a list of values of nodes.

Example 1:
Vertical Order Traversal of a Binary Tree exmaple1
Input: [3,9,20,null,null,15,7]
Output: [[9],[3,15],[20],[7]]
Explanation:
Without loss of generality, we can assume the root node is at position (0, 0):
Then, the node with value 9 occurs at position (-1, -1);
The nodes with values 3 and 15 occur at positions (0, 0) and (0, -2);
The node with value 20 occurs at position (1, -1);
The node with value 7 occurs at position (2, -2).

Example 2:
Vertical Order Traversal of a Binary Tree exmaple2
Input: [1,2,3,4,5,6,7]
Output: [[4],[2],[1,5,6],[3],[7]]
Explanation:
The node with value 5 and the node with value 6 have the same position according to the given scheme.
However, in the report "[1,5,6]", the node value of 5 comes first since 5 is smaller than 6.

Note:
The tree will have between 1 and 1000 nodes.
Each node's value will be between 0 and 1000.

class Solution:
    def verticalTraversal(self, root: TreeNode) -> List[List[int]]:
        from collections import defaultdict
        mapping = defaultdict(list)
        self.helper(root, mapping, 0, 0)
        print(mapping)
        res = sorted(mapping.keys(), key = lambda x: -x[1])
        res = sorted(res, key = lambda x: x[0])
        ans = defaultdict(list)
        for k in res:
            ans[k[0]].extend(sorted(mapping[k]))
        return [ans[k] for k in sorted(ans.keys())]
    def helper(self, root, mapping, x, y):
        if not root:
            return
        mapping[x, y].append(root.val)
        self.helper(root.left, mapping, x - 1, y - 1)
        self.helper(root.right, mapping, x + 1, y - 1)

一刷:Facebook tag

872. Leaf-Similar Trees (Easy)

Consider all the leaves of a binary tree. From left to right order, the values of those leaves form a leaf value sequence.
Leaf-Similar Trees example
For example, in the given tree above, the leaf value sequence is (6, 7, 4, 9, 8).
Two binary trees are considered leaf-similar if their leaf value sequence is the same.
Return true if and only if the two given trees with head nodes root1 and root2 are leaf-similar.

Note:
Both of the given trees will have between 1 and 100 nodes.

class Solution:
    def leafSimilar(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> bool:
        def dfs(root, arr):
            if not root:
                return
            if not root.left and not root.right:
                arr.append(root.val)
            dfs(root.left, arr)
            dfs(root.right, arr)
        a1, a2 = [], []
        dfs(root1, a1)
        dfs(root2, a2)
        return a1 == a2

generator:

class Solution:
    def leafSimilar(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> bool:
        def dfsg(root):
            if not root:
                return
            if not root.left and not root.right:
                yield root.val
            yield from dfsg(root.left)
            yield from dfsg(root.right)
        return list(dfsg(root1)) == list(dfsg(root2))

2刷:Facebook tag

863. All Nodes Distance K in Binary Tree (Medium)

We are given a binary tree (with root node root), a target node, and an integer value K.
Return a list of the values of all nodes that have a distance K from the target node. The answer can be returned in any order.

Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], target = 5, K = 2
Output: [7,4,1]
Explanation:
The nodes that are a distance 2 from the target node (with value 5)
have values 7, 4, and 1.
All Nodes Distance K in Binary Tree example
Note that the inputs "root" and "target" are actually TreeNodes.
The descriptions of the inputs above are just serializations of these objects.

Note:
The given tree is non-empty.
Each node in the tree has unique values 0 <= node.val <= 500.
The target node is a node in the tree.
0 <= K <= 1000.

写法1:

class Solution:
    def distanceK(self, root: TreeNode, target: TreeNode, k: int) -> List[int]:
        def dfs(root, dist):
            if dist == k:
                ans.append(root.val)
            seen.add(root)
            for n in graph[root]:
                if n not in seen:
                    dfs(n, dist + 1)
        def build_graph(root, pre):
            if not root:
                return
            if pre:
                graph[root].append(pre)
                graph[pre].append(root)
            build_graph(root.left, root)
            build_graph(root.right, root)
        ans = []
        graph = defaultdict(list)
        seen = set()
        build_graph(root, None)
        dfs(target, 0)
        return ans

写法2:

class Solution:
    def distanceK(self, root: TreeNode, target: TreeNode, k: int) -> List[int]:
        def build_p(root, pre):
            if not root:
                return
            parent[root] = pre
            build_p(root.left, root)
            build_p(root.right, root)
        parent = {}
        build_p(root, None)
        seen = {target}
        q = [(target, 0)]
        while q:
            if q[0][1] == k:
                return [it[0].val for it in q]
            nq = []
            for root, dist in q:
                for n in (root.left, root.right, parent[root]):
                    if n and n not in seen:
                        seen.add(n)
                        nq.append((n, dist + 1))
            q = nq
        return []

写法3:

class Solution:
    def distanceK(self, root: TreeNode, target: TreeNode, k: int) -> List[int]:
        def build_p(root, pre):
            if not root:
                return
            parent[root] = pre
            build_p(root.left, root)
            build_p(root.right, root)
        def dfs(root, dist):
            if not root:
                return
            if dist == k:
                ans.append(root.val)
            seen.add(root)
            if root.left and root.left not in seen:
                dfs(root.left, dist + 1)
            if root.right and root.right not in seen:
                dfs(root.right, dist + 1)    
        parent = {}
        build_p(root, None)
        seen = {target}
        i = 0
        ans = []
        while target:
            dfs(target, i)
            target = parent[target]
            i += 1
        return ans

2刷:Facebook tag

数组

442. Find All Duplicates in an Array (Medium)

Given an array of integers, 1 ≤ a[i] ≤ n (n = size of array), some elements appear twice and others appear once.
Find all the elements that appear twice in this array.
Could you do it without extra space and in O(n) runtime?

Example:
Input:
[4,3,2,7,8,2,3,1]
Output:
[2,3]

class Solution:
    def findDuplicates(self, nums: List[int]) -> List[int]:
        ans = []
        for v in nums:
            if nums[abs(v) - 1] < 0:
                ans.append(abs(v))
            else:
                nums[abs(v) - 1]  = -nums[abs(v) - 1]
        return ans

2刷:面经:维萨。O(n) time O(1) space需要flip当前数-1所在的位置的符号,然后检查abs(每个当前数)-1位置是否已为负数

240. Search a 2D Matrix II (Medium)

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
Integers in each row are sorted in ascending from left to right.
Integers in each column are sorted in ascending from top to bottom.

Consider the following matrix:

[
  [1,   4,  7, 11, 15],
  [2,   5,  8, 12, 19],
  [3,   6,  9, 16, 22],
  [10, 13, 14, 17, 24],
  [18, 21, 23, 26, 30]
]
Given target = 5, return true.
Given target = 20, return false.
class Solution:
    def searchMatrix(self, matrix, target):
        if not matrix:
            return False
        r, c = 0, len(matrix[0]) - 1
        while r <= len(matrix) - 1 and c >= 0:
            if target == matrix[r][c]:
                return True
            #if target > matrix[r][c] the anser cannot be in the row
            if target > matrix[r][c]:
                r += 1
            #if target < matrix[r][c] the answer cannot be in the column
            else:
                c -= 1
        return False

总结:不好的题, 因为需要一个insight就能解

986. Interval List Intersections (Medium)

Given two lists of closed intervals, each list of intervals is pairwise disjoint and in sorted order.
Return the intersection of these two interval lists.
(Formally, a closed interval [a, b] (with a <= b) denotes the set of real numbers x with a <= x <= b. The intersection of two closed intervals is a set of real numbers that is either empty, or can be represented as a closed interval. For example, the intersection of [1, 3] and [2, 4] is [2, 3].)

Example 1:
Interval List Intersections example
Input: A = [[0,2],[5,10],[13,23],[24,25]], B = [[1,5],[8,12],[15,24],[25,26]]
Output: [[1,2],[5,5],[8,10],[15,23],[24,24],[25,25]]
Reminder: The inputs and the desired output are lists of Interval objects, and not arrays or lists.

Note:
0 <= A.length < 1000
0 <= B.length < 1000
0 <= A[i].start, A[i].end, B[i].start, B[i].end < 10^9
NOTE: input types have been changed on April 15, 2019. Please reset to default code definition to get new method signature.

class Solution:
    def intervalIntersection(self, A: List[List[int]], B: List[List[int]]) -> List[List[int]]:
        ans = []
        i, j = 0, 0
        while i < len(A) and j < len(B):
            lo = max(A[i][0], B[j][0])
            hi = min(A[i][1], B[j][1])
            if lo <= hi:
                ans.append([lo, hi])
            if A[i][1] < B[j][1]:
                i += 1
            else:
                j += 1
        return ans

一刷:Facebook tag

706. Design HashMap (Medium)

Design a HashMap without using any built-in hash table libraries.

Implement the MyHashMap class:

MyHashMap() initializes the object with an empty map.
void put(int key, int value) inserts a (key, value) pair into the HashMap. If the key already exists in the map, update the corresponding value.
int get(int key) returns the value to which the specified key is mapped, or -1 if this map contains no mapping for the key.
void remove(key) removes the key and its corresponding value if the map contains the mapping for the key.
 

Example 1:
Input
["MyHashMap", "put", "put", "get", "get", "put", "get", "remove", "get"]
[[], [1, 1], [2, 2], [1], [3], [2, 1], [2], [2], [2]]
Output
[null, null, null, 1, -1, null, 1, null, -1]

Explanation
MyHashMap myHashMap = new MyHashMap();
myHashMap.put(1, 1); // The map is now [[1,1]]
myHashMap.put(2, 2); // The map is now [[1,1], [2,2]]
myHashMap.get(1);    // return 1, The map is now [[1,1], [2,2]]
myHashMap.get(3);    // return -1 (i.e., not found), The map is now [[1,1], [2,2]]
myHashMap.put(2, 1); // The map is now [[1,1], [2,1]] (i.e., update the existing value)
myHashMap.get(2);    // return 1, The map is now [[1,1], [2,1]]
myHashMap.remove(2); // remove the mapping for 2, The map is now [[1,1]]
myHashMap.get(2);    // return -1 (i.e., not found), The map is now [[1,1]]
 
Constraints:
0 <= key, value <= 106
At most 104 calls will be made to put, get, and remove.
class ListNode:
    
    def __init__(self, k, v):
        self.k, self.v = k, v
        self.next = None

class MyHashMap:

    def __init__(self):
        self.size = 100000
        self.a = [None] * self.size

    def put(self, key: int, value: int) -> None:
        k = key % self.size
        n = ListNode(key, value)
        if self.a[k] == None:
            self.a[k] = n
        else:
            c = self.a[k]
            while c.next and c.k != key:
                c = c.next
            if c.k == key:
                c.v = value
            else:
                c.next = n

    def get(self, key: int) -> int:
        k = key % self.size
        if self.a[k] == None:
            return -1
        else:
            c = self.a[k]
            while c.next and c.k != key:
                c = c.next
            if c.k == key:
                return c.v
        return -1

    def remove(self, key: int) -> None:
        k = key % self.size
        c = self.a[k]
        if c:
            pre = c
            while c.next and c.k != key:
                c = c.next
                pre = c
            if c.k == key:
                if pre == c:
                    self.a[k] = None
                else:
                    pre.next, c.next = c.next, None

3刷:高频

Heap

347. Top K Frequent Elements (Medium)

Given a non-empty array of integers, return the k most frequent elements.

Example 1:
Input: nums = [1,1,1,2,2,3], k = 2
Output: [1,2]

Example 2:
Input: nums = [1], k = 1
Output: [1]

Note:
You may assume k is always valid, 1 ≤ k ≤ number of unique elements.
Your algorithm's time complexity must be better than O(n log n), where n is the array's size.

heap O(nlogk), space: O(n)

class Solution:
    def topKFrequent(self, nums: List[int], k: int) -> List[int]:
        counter = Counter(nums)
        pq = []
        for num, freq in counter.items():
            heapq.heappush(pq, (freq, num))
            if len(pq) > k:
                heapq.heappop(pq)
        return [num for _, num in pq]

bucket sort O(n), space: O(n)

class Solution:
    def topKFrequent(self, nums: List[int], k: int) -> List[int]:
        counter = Counter(nums)
        n = len(nums)
        bucket = [[] for _ in range(n + 1)]
        ans = []
        for num, freq in counter.items():
            bucket[freq].append(num)
        for freq in range(n, 0, -1):
            ans.extend(bucket[freq])
            if len(ans) == k:
                return ans

quickselect O(n) on average, space: O(n)

class Solution:
    def topKFrequent(self, nums: List[int], k: int) -> List[int]:
        counter = Counter(nums)
        keys = list(counter.keys())
        def helper(l, r):
            if l < r:
                p = partition(l, r)
                if p == k:
                    return
                elif p < k:
                    helper(p + 1, r)
                else:
                    helper(l, p - 1)
        def partition(l, r):
            i = l
            for j in range(l, r):
                if counter[keys[j]] > counter[keys[r]]:
                    keys[i], keys[j] = keys[j], keys[i]
                    i += 1
            keys[i], keys[r] = keys[r], keys[i]
            return i
        helper(0, len(keys) - 1)
        return keys[:k]

Blind 75; 高频

767. Reorganize String (Medium)

Given a string s, rearrange the characters of s so that any two adjacent characters are not the same.

Return any possible rearrangement of s or return "" if not possible.

Example 1:
Input: s = "aab"
Output: "aba"

Example 2:
Input: s = "aaab"
Output: ""

Constraints:
1 <= s.length <= 500
s consists of lowercase English letters.

class Solution:
    def reorganizeString(self, s: str) -> str:
        c = Counter(s)
        hq = [(-v, k) for k, v in c.items()]
        heapq.heapify(hq)
        pre_k, pre_v = '', 0
        res = []
        while hq:
            v, k = heapq.heappop(hq)
            print(hq)
            res.append(k)
            if pre_v < 0:
                heapq.heappush(hq, (pre_v, k))
            v += 1
            pre_v, pre_k = v, k
        return ''.join(res) if len(res) == len(s) else ''

O(n):

class Solution:
    def reorganizeString(self, s: str) -> str:
        c = Counter(s).most_common()
        n = len(s)
        if c[0][1] > (n + 1) // 2:
            return ""
        i = 0
        ans = [''] * n
        for k, v in c:
            for _ in range(v):
                ans[i] = k
                i += 2
                if i > n - 1:
                    i = 1
        return ''.join(ans)

高频

Hash

349. Intersection of Two Arrays (Easy)

Given two arrays, write a function to compute their intersection.

Example 1:
Input: nums1 = [1,2,2,1], nums2 = [2,2]
Output: [2]

Example 2:
Input: nums1 = [4,9,5], nums2 = [9,4,9,8,4]
Output: [9,4]

Note:
Each element in the result must be unique.
The result can be in any order.

class Solution:
    def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
        nums1 = set(nums1)
        nums2 = set(nums2)
        if len(nums2) < len(nums1):
            nums1, nums2 = nums2, nums1
        ans = set()
        for n in nums1:
            if n in nums2:
                ans.add(n)
        return ans

一刷

350. Intersection of Two Arrays II (Easy)

Given two arrays, write a function to compute their intersection.

Example 1:
Input: nums1 = [1,2,2,1], nums2 = [2,2]
Output: [2,2]

Example 2:
Input: nums1 = [4,9,5], nums2 = [9,4,9,8,4]
Output: [4,9]

Note:
Each element in the result should appear as many times as it shows in both arrays.
The result can be in any order.

Follow up:
What if the given array is already sorted? How would you optimize your algorithm?
What if nums1's size is small compared to nums2's size? Which algorithm is better?
What if elements of nums2 are stored on disk, and the memory is limited such that you cannot load all elements into the memory at once?

class Solution:
    def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]:
        from collections import Counter
        counter1 = Counter(nums1)
        counter2 = Counter(nums2)
        if len(counter2) > len(counter1):
            counter1, counter2 = counter2, counter1
        ans = []
        for k in counter1:
            if k in counter2:
                ans.extend([k] * min(counter1[k], counter2[k]))
        return ans

二刷

Union Find / MST

LinC 629. Minimum Spanning Tree (Hard)

Given a list of Connections, which is the Connection class (the city name at both ends of the edge and a cost between them), find edges that can connect all the cities and spend the least amount.
Return the connects if can connect all the cities, otherwise return empty list.

Example
Example 1:

Input:
["Acity","Bcity",1]
["Acity","Ccity",2]
["Bcity","Ccity",3]
Output:
["Acity","Bcity",1]
["Acity","Ccity",2]
Example 2:

Input:
["Acity","Bcity",2]
["Bcity","Dcity",5]
["Acity","Dcity",4]
["Ccity","Ecity",1]
Output:
[]

Explanation:
No way
Notice
Return the connections sorted by the cost, or sorted city1 name if their cost is same, or sorted city2 if their city1 name is also same.

'''
Definition for a Connection
class Connection:

    def __init__(self, city1, city2, cost):
        self.city1, self.city2, self.cost = city1, city2, cost
'''
class Union:
    def __init__(self, n):
        self.size = n
        self.graph = {}
        for i in range(n):
            self.graph[i] = i

    def query(self, v1, v2):
        return self.find(v1) == self.find(v2)

    def find(self, v):
        if self.graph[v] == v:
            return v
        self.graph[v] = self.find(self.graph[v])
        return self.graph[v]

    def connect(self, v1, v2):
        root_a = self.find(v1)
        root_b = self.find(v2)
        if root_a != root_b:
            self.size -= 1
            self.graph[root_a] = self.graph[root_b]

    def all_connected(self):
        return self.size == 1

class Solution:
    # @param {Connection[]} connections given a list of connections
    # include two cities and cost
    # @return {Connection[]} a list of connections from results
    def lowestCost(self, connections):
        # Write your code here
        connections.sort(key = lambda x: x.city2)
        connections.sort(key = lambda x: x.city1)
        connections.sort(key = lambda x: x.cost)
        citymap = {}
        cnt = 0
        ans = []
        for c in connections:
            if c.city1 not in citymap:
                citymap[c.city1] = cnt
                cnt += 1
            if c.city2 not in citymap:
                citymap[c.city2] = cnt
                cnt += 1
        union = Union(cnt)
        for c in connections:
            c1 = citymap[c.city1]
            c2 = citymap[c.city2]

            if not union.query(c1, c2):
                union.connect(c1, c2)
                ans.append(c)
        return ans if union.all_connected() else []

面经:Amazon。